Cite

1. Chertok, B., Moffat, B. A., David, A. E., Yu, F., Bergemann, C., Ross, B. D., & Yang, V. C. (2008). Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials, 29(4), 487–496. DOI: 10.1016/j.biomaterials.2007.08.050.10.1016/j.biomaterials.2007.08.050Search in Google Scholar

2. Zhang, X. X., Wen, G. H., Huang, S., Dai, L., Gao, R., & Wang, Z. L. (2001). Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes. J. Magn. Magn. Mater., 231(1), 9–12. DOI: 10.1016/S0304-8853(01)00134-2.10.1016/S0304-8853(01)00134-2Search in Google Scholar

3. Bolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Iron-catalyzed reactions in organic synthesis. Chem. Rev., 104(12), 6217–6254. DOI: 10.1021/cr040664h.10.1021/cr040664hSearch in Google Scholar

4. Getzlaff, M., Bansmann, J., & Schonhense, G. (1995). Oxygen on Fe(100) and Fe(110). Fresenius J. Anal. Chem., 353(5/8), 743–747. DOI: 10.1007/BF00321362.10.1007/BF00321362Search in Google Scholar

5. Zeeshan, M. A., Pane, S., Youn, S. K., Pellicer, E., Schuerle, S., Sort, J., Fusco, S., Lindo, A. M., Park, H. G., & Nelson, B. J. (2013). Graphite coating of iron nanowires for nanorobotic applications: Synthesis, characterization and magnetic wireless manipulation. Adv. Funct. Mater., 23(7), 823–831. DOI: 10.1002/adfm.201202046.10.1002/adfm.201202046Search in Google Scholar

6. Lin, W. S., Jian, Z. J., Lin, H. M., Lai, L. C., Chiou, W. A., Hwu, Y. K., Wu, S. H., Chen, W. C., & Yao, Y. D. (2013). Synthesis and characterization of iron nanowires. J. Chinese Chem. Soc., 60(1), 85–91. DOI: 10.1002/jccs.201200263.10.1002/jccs.201200263Search in Google Scholar

7. Jubb, A. M., & Allen, H. C. (2010). Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces, 2(10), 2804–2812. DOI: 10.1021/am1004943.10.1021/am1004943Search in Google Scholar

8. Cornell, R. M., & Schwertmann, U. (2003). The iron oxides. Structure, properties, reactions, occurrences and uses. Weinheim, Germany: Wiley-VCH.10.1002/3527602097Search in Google Scholar

9. Wang, C. M., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J., & Qiang, Y. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc., 131(25), 8824–8832. DOI: 10.1021/ja900353f.10.1021/ja900353fSearch in Google Scholar

10. Long, G. J., Hautot, D., Pankhurst, Q. A., Vandormael, D., Grandjean, F., Gaspard, J. P., Briois, V., Hyeon, T., & Suslick, K. S. (1998). Mossbauer-Bauer-effect and x-ray-absorption spectral study of sonochemically prepared amorphous iron. Phys. Rev. B, 57(17), 10716–10722. DOI: 10.1103/PhysRevB.57.10716.10.1103/PhysRevB.57.10716Search in Google Scholar

11. Machala, L., Zboril, R., & Gedanken, A. (2007). Amorphous iron(III) oxide – a review. J. Phys. Chem. B, 111(16), 4003–4018. DOI: 10.1021/jp064992s.10.1021/jp064992sSearch in Google Scholar

12. Cao, X., Koltypin, Y., Katabi, G., & Prozorov, R. (1997). Preparation and characterization of amorphous nanometre sized Fe3O4 powder. J. Mater. Chem., 7(6), 1007–1009. DOI: 10.1039/a606739e.10.1039/a606739eSearch in Google Scholar

13. Petrov, Y. I., & Shafranovsky, E. A. (2012). On the conditions eliciting a detailed structure in the hyperfine field distribution at 57Fe nuclei. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 271, 96–101. DOI: 10.1016/j.nimb.2011.10.014.10.1016/j.nimb.2011.10.014Search in Google Scholar

eISSN:
0029-5922
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other