Open Access

Automatic Parameter Extraction Technique for MOS Structures by C-V Characterization Including the Effects of Interface States


Cite

[1] Suné, J., Olivo, P., Riccó, B. (1992). Quantum-mechanical modeling of accumulation layers in MOS structure. IEEE Transactions on Electron Devices, 39 (7), 1732-1739.10.1109/16.141240Search in Google Scholar

[2] Sun, J.P., Wang, W., Toyabe, T., Gu, N., Mazumder, P. (2006). Modeling of gate current and capacitance in nanoscale-MOS structures. IEEE Transactions on Electron Devices, 53 (12), 2950-2957.10.1109/TED.2006.885637Search in Google Scholar

[3] Vogel, E.M., Brown, G.A. (2003). Challenges of electrical measurements of advanced gate dielectrics in metal-oxide-semiconductor devices. In International Conference on Characterization and Metrology for ULSI Technology, March 24-28, 2003, Austin, Texas. AIP Publishing, Vol. 683, 771-781.Search in Google Scholar

[4] Hauser, J.R., Ahmed, K. (1998). Characterization of ultra-thin oxides using electrical CV and IV measurements. In International Conference on Characterization and Metrology for ULSI Technology, March 23-27, 1998, Gaithersburg, Maryland. AIP Publishing, Vol. 449, 235-239.Search in Google Scholar

[5] Richter, C.A., Hefner, A.R., Vogel, E.M. (2001). A comparison of quantum-mechanical capacitance-voltage simulators. IEEE Electron Device Letters, 22 (1), 35-37.10.1109/55.892436Search in Google Scholar

[6] Leroux, C., Allain, F., Toffoli, A., Ghibaudo, G., Reimbold, G. (2007). Automatic statistical full quantum analysis of CV and IV characteristics for advanced MOS gate stacks. Microelectronic Engineering, 84 (9), 2408-2411.10.1016/j.mee.2007.04.026Search in Google Scholar

[7] Charbonnier, M., Leroux, C., Allain, F., Toffoli, A., Ghibaudo, G., Reimbold, G. (2011). Automatic full quantum analysis of CV measurements for bulk and SOI devices. Microelectronic Engineering, 88 (12), 3404-3406.10.1016/j.mee.2009.11.017Search in Google Scholar

[8] Schroder, D.K. (2009). Electrical characterization of defects in gate dielectrics. In Defects in Microelectronic Materials and Devices. CRC Press.Search in Google Scholar

[9] Cohen, N.L., Paulsen, R.E., White, M.H. (1995). Observation and characterization of near-interface oxide traps with CV techniques. IEEE Transactions on Electron Devices, 42 (11), 2004-2009.10.1109/16.469410Search in Google Scholar

[10] Yu, P.Y., Cardona, M. (2005). Fundamentals of Semiconductors. Springer.10.1007/b137661Search in Google Scholar

[11] van der Steen, J.L., Esseni, D., Palestri, P., Selmi, L., Hueting, R.J. (2007). Validity of the parabolic effective mass approximation in silicon and germanium n-MOSFETs with different crystal orientations. IEEE Transactions on Electron Devices, 54 (8), 1843-1851.10.1109/TED.2007.900417Search in Google Scholar

[12] Jurečka, S., Kobayashi, H., Kim, W.B., Takahashi, M., Pinčík, E. (2012). Study of density of interface states in MOS structure with ultrathin NAOS oxide. Central European Journal of Physics, 10 (1), 210-217.10.2478/s11534-011-0092-6Search in Google Scholar

[13] Shih, W.C. (2014). Device Simulation of Density of Interface States of Temperature Dependent Carrier Concentration in 4H-SiC MOSFETs. Doctoral Dissertation, Auburn University.Search in Google Scholar

[14] Shi, M., Saint-Martin, J., Bournel, A. et al. (2013). Numerical and experimental assessment of charge control in III–V nano-metal-oxide-semiconductor field-effect transistor. Journal of Nanoscience and Nanotechnology, 13 (2), 771-775.10.1166/jnn.2013.611523646513Search in Google Scholar

[15] Ducroquet, F., Rauwel, E., Dubourdieu, C. (2009). Flat-band voltage and structural properties of hafnium dioxide films grown by liquid-injection MOCVD. ECS Transactions, 25 (6), 23-31.10.1149/1.3206604Search in Google Scholar

[16] Wadsworth, A. (2012). The Parametric Measurement Handbook. Agilent Technologies, Inc.Search in Google Scholar

[17] Okada, K., Sekino, T. (2003). Impedance Measurement Handbook. Agilent Technologies, Inc.Search in Google Scholar

[18] Yang, K.J., Hu, C. (1999). MOS capacitance measurements for high-leakage thin dielectrics. IEEE Transactions on Electron Devices, 46 (7), 1500-1501.10.1109/16.772500Search in Google Scholar

[19] Nara, A., Yasuda, N., Satake, H., Toriumi, A. (2002). Applicability limits of the two-frequency capacitance measurement technique for the thickness extraction of ultrathin gate oxide. IEEE Transactions on Semiconductor Manufacturing, 15 (2), 209-213.10.1109/66.999594Search in Google Scholar

[20] Luo, Z., Ma, T.P. (2004). A new method to extract EOT of ultrathin gate dielectric with high leakage current. IEEE Electron Device Letters, 25 (9), 655-657.10.1109/LED.2004.834634Search in Google Scholar

[21] Liu, H., Kuang, Q., Luan, S., Zhao, A., Tallavarjula, S. (2010). Frequency dispersion effect and parameters extraction method for novel HfO2 as gate dielectric. Science China Information Sciences, 53 (4), 878-884.10.1007/s11432-010-0079-8Search in Google Scholar

[22] Baomin, W., Guoping, R., Yulong, J., Xinping, Q., Bingzong, L., Ran, L. (2009). Capacitance–voltage characterization of fully silicided gated MOS capacitor. Journal of Semiconductors, 30 (3), 034002.10.1088/1674-4926/30/3/034002Search in Google Scholar

[23] Lue, H.T., Liu, C.Y., Tseng, T.Y. (2002). An improved two-frequency method of capacitance measurement for SrTiO 3 as high-k gate dielectric. IEEE Electron Device Letters, 23 (9), 553-555.Search in Google Scholar

[24] Wu, W.H., Tsui, B.Y., Huang, Y.P. et al. (2006). Two-frequency CV correction using five-element circuit model for high-k gate dielectric and ultrathin oxide. IEEE Electron Device Letters, 27 (5), 399-401.10.1109/LED.2006.873423Search in Google Scholar

[25] Sze, S.M. (1981). Physics of Semiconductor Devices. Wiley-Interscience.Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing