Cite

[1] Bogun, F., Crawford, T., Reich, S., et al. (2007). Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: Comparison with a control group without intervention. Heart Rhythm, 4 (7), 863-867.10.1016/j.hrthm.2007.03.003Search in Google Scholar

[2] Senderek, T., Bednarek, J., Lelakowski, J. (2015). The effectiveness of RF ablation of ventricular ectopic beats made using selected mapping techniques. Polski Merkuriusz Lekarski, 39 (233), 271-276.Search in Google Scholar

[3] Tysler, M., Tinova, M. (1993). Representation of myocardium depolarization by simple models. In Computers in Cardiology 1993, September 5-8, 1993. IEEE, 703-706.10.1109/CIC.1993.378305Search in Google Scholar

[4] Punshchykova, O., Svehlikova, J., Kneppo, P., Maksymenko, V., Tysler, M. (2014). Noninvasive localization of the ectopic focus using time integral ECG mapping. Experimental and Clinical Cardiology, 20 (7), 1564-1570.Search in Google Scholar

[5] Tysler, M., Svehlikova, J., Punshchykova, O., Kneppo, P., Maksymenko, V. (2015). Noninvasive localization of ectopic ventricular activity using BSPM and different patient torso models. In IEEE 35th International Conference on Electronics and Nanotechnology (ELNANO), April 21-24, 2015, Kyiv, Ukraine. IEEE, 325-329.10.1109/ELNANO.2015.7146902Search in Google Scholar

[6] Rosík, V., Karas, S., Hebláková, E., Tyšler, M., Filipová, S. (2007). Portable device for high resolution ECG mapping. Measurement Science Review, 7 (6), 57-61.Search in Google Scholar

[7] TatraMed Software s.r.o. (2016). TomoCon PACS. http://www.tatramed.sk/pacsItem?element=3&parentId=18&type=19Search in Google Scholar

[8] Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., Kaul, S., Laskey, W.K., et al. (2002). Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation, 105 (4), 539-542.Search in Google Scholar

[9] Barnes, J.P., Johnston, P. (2016). Application of robust Generalised Cross-Validation to the inverse problem of electrocardiology. Computers in Biology and Medicine, 69, 213-225.10.1016/j.compbiomed.2015.12.011Search in Google Scholar

[10] Tuboly, G., Kozmann, G., Maros, I. (2015). Computational aspects of electrocardiological inverse solutions. IFAC-PapersOnLine, 48 (20), 48-51.10.1016/j.ifacol.2015.10.113Search in Google Scholar

[11] Lai, D., Liu, Ch., Eggen, M.D., Iazzo, P., He, B. (2010). Equivalent moving dipole localization of cardiac ectopic activity in a swine model during pacing. IEEE Transactions on Information Technology in Biomedicine, 14 (6), 1318-1326.Search in Google Scholar

[12] Xanthis, V.P., Bonovas, M., Kyriacou, G.A. (2007). Inverse problem of ECG for different equivalent cardiac sources. Piers Online, 3 (8), 1222-1227.10.2529/PIERS070220144924Search in Google Scholar

[13] Cluitmans, M.J.M., Peeters, R.L.M., Westra, R.L., Volders, P.G.A. (2015). Noninvasive reconstruction of cardiac electrical activity: Update on current methods, applications and challenges. Netherlands Heart Journal, 23 (6), 301-311.10.1007/s12471-015-0690-9Search in Google Scholar

[14] van der Graaf, A.W.M., Bhagirath, P., de Hooge, J., de Groot, N.M.S., Gotte, M.J.W. (2016). A priori model independent inverse potential mapping: The impact of electrode positioning. Clinical Research in Cardiology, 105, 79-88.10.1007/s00392-015-0891-7Search in Google Scholar

[15] Lux, R.L., Smith, R.F., Abildskov, J.A. (1978). Limited lead selection for estimating body surface potentials in electrocardiography. IEEE Transactions on Biomedical Engineering, 25 (3), 270-276.10.1109/TBME.1978.326332Search in Google Scholar

[16] Hoekema, R., Uijen, G.J., van Oosterom, A. (1999). On selecting a body surface mapping procedure. Journal of Electrocardiology, 32 (2), 93-101.10.1016/S0022-0736(99)90088-2Search in Google Scholar

[17] Cheng, L.K., Sands, G.B., Pullan, A.J. (2005). Construction of patient specific geometries suitable for the inverse problem of electrocardiography. In 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEEEMBS 2005), January 17-18, 2005. IEEE, 7201-7203.10.1109/IEMBS.2005.161617017281939Search in Google Scholar

[18] Tysler, M., Svehlikova, K., Punshchykova, O., Lenkova, J. (2013). Influence of torso model accuracy on the noninvasive localization of heart pathologies. Acta Mechanica Slovaca, 17 (3), 18-25.10.21496/ams.2013.028Search in Google Scholar

[19] Prakosa, A., Malamas, P., Zhang, S., Pashakhanloo, F., Arevalo, H., Herzka, D.A., et al. (2014). Methodology for image-based reconstruction of ventricular geometry for patient-specific modeling of cardiac electrophysiology. Progress in Biophysics & Molecular Biology, 115 (2-3), 226-234.10.1016/j.pbiomolbio.2014.08.009425386625148771Search in Google Scholar

[20] Rahimi, A., Wang, L. (2015). Sensitivity of noninvasive cardiac electrophysiological imaging to variations in personalized anatomical modeling. IEEE Transactions on Biomedical Engineering, 62 (6), 1563-1575.10.1109/TBME.2015.2395387458172925615906Search in Google Scholar

[21] Keller, D.U.J., Weber, F.M., Seemann, G., Doessel, O. (2010). Ranking the influence of tissue conductivities on forward-calculated ECGs. IEEE Transactions on Biomedical Engineering, 57 (7), 1568-1576.10.1109/TBME.2010.204648520659824Search in Google Scholar

[22] Zemzemi, N., Dobrzynski, C., Bear, L., Potse, M., Dallet, C., Coudiére, Y., Dubois, R., Duchateau, J. (2015). Effect of the torso conductivity heterogeneities on the ECGI inverse problem solution. In Computing in Cardiology 2015, September 6-9, 2015. IEEE, 233-236.10.1109/CIC.2015.7408629Search in Google Scholar

[23] Ramanathan, C., Rudy, Y. (2011). Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones. Journal of Cardiovascular Electrophysiology, 12 (2), 241-252.Search in Google Scholar

[24] Ghodrati, A., Brooks, D.H., Tadmor, G., MacLeod, R.S. (2006). Wavefront-based models for inverse electrocardiography. IEEE Transactions on Biomedical Engineering, 53 (9), 1821-1831.10.1109/TBME.2006.87811716941838Search in Google Scholar

[25] Liu, C., Skadsberg, N.D., Ahlberg, S.E., Swingen, C.M., Iaizzo, P.A., He, B. (2008). Estimation of global ventricular activation sequences by noninvasive 3- dimensional electrical imaging: Validation studies in a swine model during pacing. Journal of Cardiovascular Electrophysiology, 19 (5), 535-540.10.1111/j.1540-8167.2007.01066.x242424718179521Search in Google Scholar

[26] Liu, C., Zhang, X., Liu, Z., Pogwizd, S.M., He, B. (2006). Three-dimensional myocardial activation imaging in a rabbit model. IEEE Transactions on Biomedical Engineering, 53, 1813-1820.Search in Google Scholar

[27] Šťovíček, P., Havránek, Š., Šimek, J., Zborník, M., Mlček, M., Kittnar, O. (2010) Isopotential ECG imaging correctly identified endocardial ectopic activation site in the case of arrhythmia from right ventricular outflow tract. IFMBE Proceedings, 25 (4), 1965-1968.Search in Google Scholar

[28] Coll-Font, J., Erem, B., Stovicek, P., Brooks, D.H., van Dam, P.M. (2015). Quantitative comparison of two cardiac electrical imaging methods to localize pacing sites. Computing in Cardiology 2015, September 6-9, 2015. IEEE, 217-220.10.1109/CIC.2015.7408625Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing