Open Access

A New High Precision Power Detector of Complex Voltage Signals


Cite

[1] Northrop, R.B. (1990). Analog Electronics Circuits. Reading, MA: Addison-Wesley.Search in Google Scholar

[2] Heavey, P., Whitney, C. (2004). RMS measuring principles in the application of protective relaying and metering. In 57th Annual Conference Protective Relay Engineering. IEEE, 469-489.10.1109/CPRE.2004.238610Search in Google Scholar

[3] Pogliana, U. (1997). Precision measurement of ac voltage below 20 Hz at IEN. IEEE Transactions on Instrumentation and Measurement, 46 (2), 369-372.10.1109/19.571858Search in Google Scholar

[4] Germer, H. (2001). High-precision AC measurements using the Monte-Carlo method. Transactions on Instrumentation and Measurement, 50 (2), 457-460.10.1109/19.918165Search in Google Scholar

[5] Yoon, W.-K., Deveney, M.J. (1998). Power measurement using the wavelet transform. Transactions on Instrumentation and Measurement, 47 (5), 1205-1210.10.1109/19.746584Search in Google Scholar

[6] Novotny, M., Sedlacek, M. (2008). RMS value measurement based on classical and modified digital signal processing algorithms. Measurement, 41 (3), 236-250.10.1016/j.measurement.2006.11.011Search in Google Scholar

[7] National Semiconductor Corporation. (2002). True RMS Detector. Application Note AN008474.Search in Google Scholar

[8] Dataforth Corporation. (2011). DSCA33 Isolated True RMS Input Module. Application Note AN101.Search in Google Scholar

[9] Analog Devices, Inc. (2011). High Precision, Wide- Band RMS-to-DC Converter. Application Note AD637.Search in Google Scholar

[10] Mulder, J., Serdijn, W.A., Woerd, A.C., Roermund, A.H.M. (1996). Dynamic translinear RMS-DC converter. Electronics Letters, 32, 2067-2068.10.1049/el:19961365Search in Google Scholar

[11] Mulder, J., Serdijn, W.A., Roermund, A.H.M. (1997). An RMS-DC converter based on the dynamic translinear principle. IEEE Journal of Solid State Circuits, 32, 1146-1150.10.1109/4.597308Search in Google Scholar

[12] Surakampontron, W., Kumwachara, K. (1999). A dual translinear-based RMS-to-DC converter. IEEE Transactions on Instrumentation and Measurement, 47, 456-464.Search in Google Scholar

[13] Wasseneaar, R.F., Seevinck, E., Van Leeuwen, M.G., Speelman, C.J., Holle, E. (1998). New techniques for high-frequency RMS-to-DC conversion based on a multifunctional V-to-I convertor. IEEE Journal of Solid State Circuits, 23 (3), 802-815.Search in Google Scholar

[14] Milanović, V., Gaitan, M., Bowen, E.D., Tea, N.H., Zaghlou, M.E. (1997). Thermoelectric power sensors for microwave applications by commercial CMOS fabrication. IEEE Electron Device Letters, 18 (9), 450-452.10.1109/55.622527Search in Google Scholar

[15] Petrović, P., Župunski, I. (2013). RMS detector of periodic, band-limited signals based on usage of DOCCIIs. Measurement, 46 (9), 3073-3083.Search in Google Scholar

[16] Yu, C., Wu, C.L., Kshattry, S., Yun, Y.H., Cha, C.Y., Shichijo, H., Kenneth, K.O. (2012). Compact, high impedance and wide bandwidth detectors for characterization of millimeter wave performance. IEEE Journal of Solid State Circuits, 47 (10), 2335-2343.10.1109/JSSC.2012.2219155Search in Google Scholar

[17] Kaewdang, K., Kumwachara, K., Surakampontorn, W. (2009). A translinear-based true RMS-to-DC converter using only npn BJTs. AEU - International Journal of Electronics and Communications, 63 (6), 472-477.10.1016/j.aeue.2008.03.008Search in Google Scholar

[18] Farshidi, E., Asiaban, H. (2012). A new true RMS-to- DC converter using up-down translinear loop in CMOS technology. Analog Integrated Circuits and Signal Processing, 70 (3), 385-390.10.1007/s10470-011-9691-9Search in Google Scholar

[19] Zhou, Y., Chia, M.Y.W. (2008). A low-power ultrawideband CMOS true RMS power detector. IEEE Transactions on Microwave Theory and Techniques, 56 (5), 1052-1058.10.1109/TMTT.2008.921299Search in Google Scholar

[20] Yin, Q., Eisenstadt, W.R, Fox, R.M., Zhang, T. (2005). A translinear RMS detector for embedded test of RF ICs. IEEE Transactions on Instrumentation and Measurement, 54 (5), 1708-1714.10.1109/TIM.2005.855105Search in Google Scholar

[21] Klahn, G. (1999). True RMS power detection with high dynamic range. In IEEE MTT-S International Microwave Symposium Digest, 13-19 June 1999. IEEE, vol. 4, 1773-1776.Search in Google Scholar

[22] Zhang, T., Eisenstadt, W.R., Fox, R.M., Yin, Q. (2006). Bipolar microwave RMS power detectors. IEEE Journal of Solid State Circuits, 41 (9), 2188-2192.10.1109/JSSC.2006.880592Search in Google Scholar

[23] Yuce, E., Minaei, S., Tokat, S. (2007). Root-meansquare measurement of distinct voltage signals. IEEE Transactions on Instrumentation and Measurement, 56 (6), 2782-2787.10.1109/TIM.2007.908153Search in Google Scholar

[24] Abulma’atti, M.T. (2009). Improved analysis of implicit RMS detectors. IEEE Transactions on Instrumentation and Measurement, 58 (3), 502-505.10.1109/TIM.2008.2005262Search in Google Scholar

[25] Lopez-Martin, A.J., Calosena, A. (2001). A currentmode RMS-DC converter for very low-voltage applications. In 8th IEEE International Conference on Electronics, Circuits and Systems, 2-5 September 2001. IEEE, vol. 1, 425-428.Search in Google Scholar

[26] Koton, J., Herencsar, N., Vrba, K. (2011). Current and voltage conveyors in current and voltage-mode precision full-wave rectifiers. Radioengineering, 20 (1), 19-24.Search in Google Scholar

[27] Taotao, Y., Hui, W., Jinbo, L., Jianjun, Z. (2013). A digitally calibrated CMOS RMS power detector for RF automatic gain control. Journal of Semiconductors, 34 (3), 1-7.Search in Google Scholar

[28] Thanachayanont, A. (2014). Design of a low-power wide dynamic range CMOS RF power detector. International Journal of Electronics Letters, DOI:10.1080/00207217.2014.917717.10.1080/00207217.2014.917717Search in Google Scholar

[29] Valdes-Garcia, A., Venkatasubramanian, R., Srinivasan, J., Silva-Martinez, R., Sanchez-Sinencio, E. (2005). A CMOS RF RMS detector for built-in testing of wireless transceivers. In 23rd IEEE VLSI Test Symposium, 1-5 may 2005. IEEE, 249-254.10.1109/VTS.2005.8Search in Google Scholar

[30] Kaewdang, K., Kumwachara, K., Surakampontorn, W. (2004). A simple wide-band CMOS based true rms-todc converter. International Journal of Electronics, 91 (7), 407-420.10.1080/00207210412331294621Search in Google Scholar

[31] Farshidi, E., Sayedi, S.M. (2007). A micropower multi decade dynamic range current-mode true RMS-to-DC converter. In IEEE Northeast Workshop on Circuits and Systems (NEWCAS 2007), 5-8 August 2007. IEEE, 1493-1496.10.1109/NEWCAS.2007.4488029Search in Google Scholar

[32] Shaterian, M., Twigg, C., Azhari, J. (2014). MTLbased implementation of current-mode CMOS RMSto- DC converters. International Journal of Circuit Theory and Applications, 43 (6), 793-805.Search in Google Scholar

[33] Tangsrirat, W. (2007). Current-tunable current-mode multifunction filter based on dual-output currentcontrolled conveyors. AEU - International Journal of Electronics and Communications, 61, 528-533.10.1016/j.aeue.2006.09.005Search in Google Scholar

[34] Chien, H.C., Wang, J.M. (2013). Dual-mode resistorless sinusoidal oscilator using single CCCDTA. Microelectronics Journal, 44, 216-224.10.1016/j.mejo.2012.12.007Search in Google Scholar

[35] Silapan, P., Siripruchyanun, M. (2011). Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integrated Circuits and Signal Processing, 68 (1), 111-128.10.1007/s10470-010-9593-2Search in Google Scholar

[36] Silapan, P., Chanapormma, C. (2011). A temperatureinsensitive simple current-mode multiplier/divider employing only multiple-output CDTA, ACEEE. International Journal on Electrical and Power Engineering, 2 (3), 42-45.Search in Google Scholar

[37] Lahiri, A., Chowdhury, A. (2011). Four quadrant analog multiplier using dual-current-controlled current differecing buffered amplifier. Journal of Circuits, Systems, and Computers, 20 (2), 223-231.10.1142/S0218126611007219Search in Google Scholar

[38] Pisutthipong, N., Siripruchyanun, M. (2009). A novel simple current-mode multiplier/divider employing only single multiple-output current controlled CTTA. In TENCON 2009 - IEEE Region 10 Conference, 23-26 January 2009. IEEE, 1-4.10.1109/TENCON.2009.5395877Search in Google Scholar

[39] Tangsrirat, W., Pukkalanun, T., Mongkolwai, P., Surakampontorn, W. (2011). Simple current-mode analog multiplier, divider, square-rooter and squarer based on CDTAs. AEU - International Journal of Electronics and Communications, 65 (3), 198-203.10.1016/j.aeue.2010.02.017Search in Google Scholar

[40] Fabre, A., Saaid, F., Wiest, F., Boucheron, C. (1996). High frequency application based on a new current controlled conveyor. IEEE Transactions on Circuits and Systems I, 43 (2), 82-91.10.1109/81.486430Search in Google Scholar

[41] Minaei, S., Sayin, O.K., Kuntman, H. (2006). A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Transactions on Circuits and Systems I, 53 (7), 1448-1457. 10.1109/TCSI.2006.875184Search in Google Scholar

[42] Sotner, R., Slezak, J., Dostal, T., Petrzel, J. (2010). Universal tunable current-mode biquad employing distributed feedback structure with MO-CCCII. Journal of Electrical Engineering, 61 (1), 52-56.10.2478/v10187-010-0007-6Search in Google Scholar

[43] Frey, R. (2004). Exact analysis of implicit RMS converters. Electronics Letters, 40 (5), 1455-1456.10.1049/el:20040204Search in Google Scholar

[44] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data - Guide to the expression of uncertainty in measurement. JCGM 100:2008.Search in Google Scholar

[45] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data - Supplement 1 to the ‘Guide to the expression of uncertainty in measurement’ - Propagation of distributions using a Monte Carlo method. JCGM 101:2008.Search in Google Scholar

[46] Frey, D.R. (1993). Log-domain filtering: An approach to currentmode filtering. IEE Proceedings G: Circuit Devices and Systems, 140, 406-416.10.1049/ip-g-2.1993.0066Search in Google Scholar

[47] Rumberg, B., Graham, D.W. (2012). A low-power magnitude detector for analysis of transient-rich signals. IEEE Journal of Solid State Circuits, 47 (3), 676-685.10.1109/JSSC.2011.2179452Search in Google Scholar

[48] Analog Devices. (1990). Linear Products Data Book.Search in Google Scholar

[49] Minaei, S., Yuce, E. (2008). Realization of tunable active floating inductance simulators. International Journal of Electronics, 95 (1), 27-37.10.1080/00207210701809333Search in Google Scholar

[50] Fluke, Inc. (2012). Fluke multimeters. http://us.fluke.com/usen/products/ Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing