Open Access

Study of Small-signal Model of Simple CMOS Amplifier with Instability Compensation of Positive Feedback Loop


Cite

[1] Biolek, D., Senani, R., Biolkova, V., Kolka, Z. (2008). Active elements for analog signal processing: Classification, review, and new proposals. Radioengineering, 17 (4), 15-32.Search in Google Scholar

[2] Geiger, R.L., Sanchez-Sinencio, E. (1985). Active filter design using operational transconductance amplifiers: A tutorial. IEEE Circuits and Devices Magazine, 1, 20-32.10.1109/MCD.1985.6311946Search in Google Scholar

[3] Fabre, A., Saaid, O., Wiest, F., Boucheron, C. (1996). High frequency applications based on a new current controlled conveyor. IEEE Transactions on Circuits and Systems I, 43 (2), 82-91.10.1109/81.486430Search in Google Scholar

[4] Surakampontorn, W., Thitimajshima, W. (1988). Integrable electronically tunable current conveyors. IEE Proceedings G, 135 (2), 71-77.10.1049/ip-g-1.1988.0010Search in Google Scholar

[5] Fabre, A., Mimeche, N. (1994). Class A/AB second-generation current conveyor with controlled current gain. Electronics Letters, 30 (16), 1267-1268.10.1049/el:19940878Search in Google Scholar

[6] Alzaher, H., Tasadduq, N., Al-Ees, O., Al-Ammari, F. (2013). A complementary metal–oxide semiconductor digitally programmable current conveyor. International Journal of Circuit Theory and Applications, 41 (1), 69-81.Search in Google Scholar

[7] El-Adawy, A., Soliman, A.M., Elwan, H.O. (2002). Low voltage digitally controlled CMOS current conveyor. AEU - International Journal of Electronics and Communications, 56 (3), 137-144.10.1078/1434-8411-54100086Search in Google Scholar

[8] Biolek, D., Bajer, J., Biolkova, V., Kolka, Z., Kubicek, M. (2010). Z copy-controlled gain-current differencing buffered amplifier and its applications. International Journal of Circuit Theory and Applications, 39 (3), 257-274.Search in Google Scholar

[9] Marcellis, A., Ferri, G., Guerrini, N.C., Scotti, G., Stornelli, V., Trifiletti, A. (2009). The VGC-CCII: A novel building block and its application to capacitance multiplication. Analog Integrated Circuits and Signal Processing, 58 (1), 55-59.10.1007/s10470-008-9213-6Search in Google Scholar

[10] Minaei, S., Sayin, O.K., Kuntman, H. (2006). A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Transactions on Circuits and Systems I, 53 (7), 1448-1457.10.1109/TCSI.2006.875184Search in Google Scholar

[11] Kumngern, M., Junnapiya, S. (2010). A sinusoidal oscillator using translinear current conveyors. In IEEE Asia Pacific Conference on Circuits and Systems (APPCAS), 6-9 December 2010, Kuala Lumpur, Malaysia. IEEE, 740-743.10.1109/APCCAS.2010.5774754Search in Google Scholar

[12] Sotner, R., Jerabek, J., Herencsar, N., Hrubos, Z., Dostal, T., Vrba, K. (2012). Study of adjustable gains for control of oscillation frequency and oscillation condition in 3R-2C oscillator. Radioengineering, 21 (1), 392-402.Search in Google Scholar

[13] Sotner, R., Kartci, A., Jerabek, J., Herencsar, N., Dostal, T., Vrba, K. (2012). An additional approach to model current followers and amplifiers with electronically controllable parameters from commercially available ICs. Measurement Science Review, 12 (6), 255-265.10.2478/v10048-012-0035-4Search in Google Scholar

[14] Sotner, R., Herencsar, N., Jerabek, J., Dvorak, R., Kartci, A., Dostal, T., Vrba, K. (2013). New double current controlled CFA (DCC-CFA) based voltage-mode oscillator with independent electronic control of oscillation condition and frequency. Journal of Electrical Engineering, 64 (2), 65-75.10.2478/jee-2013-0010Search in Google Scholar

[15] Razavi, B. (2001). Design of Analog CMOS Integrated Circuits. McGraw-Hill, 18-19, 100-165.Search in Google Scholar

[16] Mirvakili, A., Koomson, V.J. (2014). Passive frequency compensation for high gain-bandwidth and high slew-rate two-stage OTA. Electronic Letters, 50 (9), 657-659.10.1049/el.2014.0473Search in Google Scholar

[17] Aamir, S.A., Harikumar, P., Wikner, J.J. (2013). Frequency compensation of high-speed, low-voltage CMOS multistage amplifiers. In IEEE International Symposium on Circuits and Systems (ISCAS), 19-23 May 2013, Beijing, China. IEEE, 381-384.10.1109/ISCAS.2013.6571860Search in Google Scholar

[18] Lee, H.D., Lee, K.Y., Hong, S.A. (2007). Wideband CMOS variable gain amplifier with an exponential gain control. IEEE Transactions on Microwave Theory and Techniques, 55 (6), 1363-1373.10.1109/TMTT.2007.896787Search in Google Scholar

[19] Kwon, J.K., Kim, K.D., Song, W.C., Cho, G.H. (2003). Wideband high dynamic range CMOS variable gain amplifier for low voltage wireless applications. Electronics Letters, 39 (10), 759-760.10.1049/el:20030516Search in Google Scholar

[20] Harjani, R.A. (1995). A low-power CMOS VGA for 50 Mb/s disk drive read channels. IEEE Transactions on Circuits and Systems II, 42 (6), 370-376.10.1109/82.392312Search in Google Scholar

[21] Huang, P., Chiou, L.Y., Wang, C.K. (1998). A 3.3-V CMOS wideband exponential control variable-gain-amplifier. In IEEE International Symposium on Circuits and Systems (ISCAS), 31 May – 3 Jun 1998, Monterey, USA. IEEE, I-285–I-288.Search in Google Scholar

[22] Duong, Q.H., Quan, L., Lee, S.G. (2005). An all CMOS 84-dB linear low-power variable gain amplifier. In Symposium on VLSI Circuits – Digest of Technical Papers, 16-18 June 2005. IEEE, 114–117.10.1109/VLSIC.2005.1469346Search in Google Scholar

[23] Otaka, S., Takemura, G., Tanimoto, H. (2000). A low-power low-noise accurate linear-in-dB variable-gain amplifier with 500 MHz bandwidth. IEEE Journal of Solid-State Circuits, 35 (12), 1942-1948.10.1109/4.890308Search in Google Scholar

[24] Haga, Y., Kale, I. (2009). CMOS buffer using complementary pair of bulk-driven super source followers. Electronics Letters, 45 (18), 917-918.10.1049/el.2009.1382Search in Google Scholar

[25] Lopez-Martin, A.J., Ramirez-Angulo, J., Carvalaj, R.G., Acosta, L. (2009). Power-efficient class AB CMOS buffer. Electronics Letters, 45 (2), 89-90.10.1049/el:20092270Search in Google Scholar

[26] Haga, Y., Kale, I. (2009). Bulk-driven flipped voltage follower. In IEEE International Symposium on Circuit and Systems (ISCAS), 24-27 May 2009, Taipei, China. IEEE, 2717-2720.10.1109/ISCAS.2009.5118363Search in Google Scholar

[27] Ramirez-Angulo, J., Lopez-Martin, A.J., Carvalaj, R.G., Torralbam, A., Jimenez, M. (2006). Simple class-AB voltage follower with slew rate and bandwidth enhancement and no extra static power or supply requirements. Electronics Letters, 42 (14), 784-785.10.1049/el:20060617Search in Google Scholar

[28] Mangelsdorf, Ch.W. (2000). A variable gain CMOS amplifier with exponential gain control. In Symposium on VLSI Circuits –Digest of Technical Papers, 15-17 June 2000, Honolulu, USA. IEEE, 146-149.10.1109/VLSIC.2000.852875Search in Google Scholar

[29] Liao, P., Luo, P., Li, H., Zhang, B. (2014). Split compensation for inverter-based two-stage amplifier. Microelectronics Journal, 44 (8), 683-687.Search in Google Scholar

[30] Dejhan, K., Suwanchatree, N., Prommee, P., Piangprantong, S., Chaisayun, I. (2004). A CMOS voltage-controlled grounded resistor using single power supply. In International Symposium on Communications and Information Technology (ICSIT), 26-29 October 2004. IEEE, 124-127.10.1109/ISCIT.2004.1412463Search in Google Scholar

[31] MOSIS parametric test results of TSMC LO EPI SCN018 technology. ftp://ftp.isi.edu/pub/mosis/vendors/tsmc-018/t44eloepi-params.txtSearch in Google Scholar

[32] Advances Linear Devices, Inc. (2012). Quad/dual n-channel matched pair mosfet array. ALD1106. http://aldinc.com/pdf/ALD1106.pdfSearch in Google Scholar

[33] Advances Linear Devices, Inc. (2012). Quad/dual p-channel matched pair mosfet array. ALD1107. http://aldinc.com/pdf/ALD1107.pdfSearch in Google Scholar

[34] Sotner, R., Hrubos, Z., Herencsar, N., Jerabek, J., Dostal, T., Vrba, K. (2014). Precise electronically adjustable oscillator suitable for quadrature signal generation employing active elements with current and voltage gain control. Circuits, Systems and Signal Processing, 33 (1), 1-35.10.1007/s00034-013-9623-2Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing