Open Access

Effect of changing P/Ge and Mn/Fe ratios on the magnetocaloric effect and structural transition in the (Mn,Fe)2 (P,Ge) intermetallic compounds


Cite

Fig. 1

Microstructure of sample 1 and its local elemental analysis. In the description a. 1 and a. 2 stand for areas and p. 3 and p. 4 for points.
Microstructure of sample 1 and its local elemental analysis. In the description a. 1 and a. 2 stand for areas and p. 3 and p. 4 for points.

Fig. 2

Ambient temperature X-ray diffraction patterns.
Ambient temperature X-ray diffraction patterns.

Fig. 3

Rietveld refinement pattern for Sample 1. Red points – experimental data, solid black line – refined curve, vertical lines define the Bragg line positions separately for each phase, upper blue line marks the difference between the experimental and refined data.
Rietveld refinement pattern for Sample 1. Red points – experimental data, solid black line – refined curve, vertical lines define the Bragg line positions separately for each phase, upper blue line marks the difference between the experimental and refined data.

Fig. 4

Temperature dependent X-ray diffraction maps: (a) Sample 1 (b) Sample 3 and (c) Sample 5.
Temperature dependent X-ray diffraction maps: (a) Sample 1 (b) Sample 3 and (c) Sample 5.

Fig. 5

Arrott plots and magnetic entropy change for Samples 5, 1 and 3 (numbered from the top)
Arrott plots and magnetic entropy change for Samples 5, 1 and 3 (numbered from the top)

Fig. 6

Impact of Ge/P and Mn/Fe ratios on adiabatic temperature change and thermal hysteresis of studied samples.
Impact of Ge/P and Mn/Fe ratios on adiabatic temperature change and thermal hysteresis of studied samples.

Fig. 7

Complex analysis of structural transition kinetics in Samples 1 and 3 with different Ge/P ratios. Top panel – DSC curves for different heating rates, middle panel – Avrami fits of kinetic curves, bottom panel – FWO fits and activation energies.
Complex analysis of structural transition kinetics in Samples 1 and 3 with different Ge/P ratios. Top panel – DSC curves for different heating rates, middle panel – Avrami fits of kinetic curves, bottom panel – FWO fits and activation energies.

Comparison of the obtained data with the literature.

Chemical compositionTC [K]DS : BPreparation methodYear
Mn1.1Fe0.9P0.81Ge0.1926014 J/kg K : 2 Tbulk (mechanical alloying)2008[4]
Mn1.1Fe0.9P0.78Ge0.2229820 J/kg K : 2 T
Mn1.1Fe0.9P0.75Ge0.2533013 J/kg K : 2 T
Mn1.1Fe0.9P0.8Ge0.220615 J/kg K : 2 Tribbon bulk alloy (induction) ribbon2006[5]
Mn1.1Fe0.9P0.76Ge0.2429911 J/kg K : 2 T
Mn1.1Fe0.9P0.76Ge0.2431717 J/kg K : 2 T
Mn1.1Fe0.9P0.8Ge0.225528 J/kg K : 2 Tbulk (mechanical alloying)2009[6]
Mn1.1Fe0.9P0.8Ge0.225022 J/kg K : 2 Tbulk (mechanical alloying)2010[7]
MnFeP0.7Ge0.3360bulk (mechanical alloying)2004[8]
MnFeP0.5Ge0.5570
Mn1.1Fe0.9P0.74Ge0.2632345 J/kg K : 5 Tribbons (arc melting + melt spinning)2015[9]
Mn1.1Fe0.9P0.7Ge0.336019 J/kg K : 5 T
Mn1.1Fe0.9P0.68Ge0.324039 J/kg K : 5 T
Mn1.1Fe0.9P0.7Ge0.3380bulk (mechanical alloying)2005[10]
Mn1.15Fe0.85P0.76Ge0.2526310 J/kg K : 2 Tbulk (arc melting)2015[11]
Mn1.15Fe0.85P0.74Ge0.26272
Mn1.15Fe0.85P0.72Ge0.28314
Mn1.15Fe0.85P0.70Ge0.3033012 J/kg K : 2 T
Mn1.15Fe0.85P0.68Ge0.3234212 J/kg K : 2 T
Mn1.05Fe0.95P0.81Ge0.192959 J/kg K : 2 Tbulk (solid-state reaction)this work
Mn1.05Fe0.95P0.79Ge0.21310
Mn1.05Fe0.95P0.78Ge0.223357 J/kg K : 2 T
Mn1.1Fe0.9P0.78Ge0.22318
Mn1.17Fe0.83P0.78Ge0.222939 J/kg K : 2 T

Peak temperatures and Avrami kinetic parameters derived for two measured samples with different heating rates. F – rate of heating, Tp – peak transformation temperature, ln(k’) – rate constant logarithm, n – Avrami exponent, t1/2 – half-time of transformation.

Φ [K/min]Tp [K]ln(k’)nt1/2 [min]
Mn1.05Fe0.95P0.78Ge 0.22
30342.48(8.59±0.27) × 10−24.31±0.110.900
25342.337.38±0.28) × 10−24.26±0.120.902
20341.85(5.60±0.30) × 10−24.07±0.120.901
15341.71(−4.31±2.47) × 1034.24±0.130.918
10341.57(−2.11±0.07) × 1014.38±0.160.965
5340.79− 1.01±0.044.46±0.191.155
Mn1.05Fe0.95P0.81Ge 0.19
30305.27(3.37±0.09) × 10−25.24±0.080.926
25304.98(2.10±0.50) × 10−25.18±0.120.928
20304.64(−5.37±0.10) ×1025.27±0.110.942
15304.30(−1.41±0.03) × 1014.87±0.110.955
10303.90(−4.71±0.10) × 1015.25±0.121.020
5303.28−1.66±0.04−5.27±0.131.278

Weight fractions of refined phases, room temperature lattice parameters, c/a ratio and unit-cell volume for Fe2P-type phase. Sample 3 is in the low-temperature ferromagnetic state.

No.Fe2P-type [%]MnO [%]Fe3Mn4Ge6[%]a = b [Å]c [Å]c/a ratioV[ Å3]
187.97±0.746.45±0.535.57±0.176.0795±0.00063.4515±0.00040.5677110.476±0.021
287.53±1.036.57±1.145.90±0.326.1016±0.00143.4421±0.00100.5641110.979±0.049
383.05±1.0712.20±0.974.75±0.216.1765±0.00113.3514±0.00060.5426110.724±0.034
480.97±1.0412.45±0.986.58±0.226.1038±0.00093.4441±0.00060.5704111.123±0.030
581.83±1.3914.24±0.933.93±0.186.1118±0.00083.4429±0.00050.5633111.375±0.027
eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties