Cite

Fig. 1

SRIM/TRIM simulation for 400 keV Au+ ion implantation in CR-39 (a) estimated ion trajectories (b) vacancies-depth distribution.
SRIM/TRIM simulation for 400 keV Au+ ion implantation in CR-39 (a) estimated ion trajectories (b) vacancies-depth distribution.

Fig. 2

Raman spectrum for pristine CR-39.
Raman spectrum for pristine CR-39.

Fig. 3

Raman spectra of 400 keV Au+ ion implanted CR-39 at (a) 5 × 1014 ions/cm2 and (b) 5 × 1015 ions/cm2.
Raman spectra of 400 keV Au+ ion implanted CR-39 at (a) 5 × 1014 ions/cm2 and (b) 5 × 1015 ions/cm2.

Fig. 4

FT-IR spectra of (a) pristine and implanted CR-39 with 400 keV Au+ ion beam at (b) 5 × 1013 ions/cm2 (c) 1 × 1014 ions/cm2 (d) 5 × 1014 ions/cm2 (e) 1 × 1015 ions/cm2 (f) 5 × 1015 ions/cm2.
FT-IR spectra of (a) pristine and implanted CR-39 with 400 keV Au+ ion beam at (b) 5 × 1013 ions/cm2 (c) 1 × 1014 ions/cm2 (d) 5 × 1014 ions/cm2 (e) 1 × 1015 ions/cm2 (f) 5 × 1015 ions/cm2.

Fig. 5

Surface topography AFM images (2 μm × 2 μm) of (a) pristine CR-39 and implanted by 400 keV Au+ ions at (b) 5 × 1013 ions/cm2 (c) 5 × 1014 ions/cm2 (d) 5 × 1015 ions/cm2. The images on the left hand side of the figure are three-dimentional AFM micrographs, two-dimentional topographic scans are in the middle, while line profiles of surface, highlighted in the 2D images, are shown on the right hand side of the figure.
Surface topography AFM images (2 μm × 2 μm) of (a) pristine CR-39 and implanted by 400 keV Au+ ions at (b) 5 × 1013 ions/cm2 (c) 5 × 1014 ions/cm2 (d) 5 × 1015 ions/cm2. The images on the left hand side of the figure are three-dimentional AFM micrographs, two-dimentional topographic scans are in the middle, while line profiles of surface, highlighted in the 2D images, are shown on the right hand side of the figure.

Fig. 6

UV-Vis absorption spectra of CR-39 (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.
UV-Vis absorption spectra of CR-39 (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.

Fig. 7

Plots of (αhν)1/2 vs. (hν) to determine optical band gap energy of CR-39 polymer (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.
Plots of (αhν)1/2 vs. (hν) to determine optical band gap energy of CR-39 polymer (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.

Fig. 8

Plot of optical band gap energy (Eg) and % decrease in band gap energy vs. ion fluence.
Plot of optical band gap energy (Eg) and % decrease in band gap energy vs. ion fluence.

Fig. 9

Plots of ln(α) vs. (hν) to determine Urbach energy of CR-39 (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.
Plots of ln(α) vs. (hν) to determine Urbach energy of CR-39 (a) pristine and implanted at 400 keV to (b) 5 × 1013 Au+ ions/cm2, (c) 1 × 1014 Au+ ions/cm2, (d) 5 × 1014 Au+ ions/cm2, (e) 1 × 1015 Au+ ions/cm2, (f) 5 × 1015 Au+ ions/cm2.

Fig. 10

Urbach energy vs. ion fluence for 400 keV Au+ ion implanted CR-39.
Urbach energy vs. ion fluence for 400 keV Au+ ion implanted CR-39.

Electrical conductivity of pristine and 400 keV Au+ ion implanted CR-39 with different ion fluences.

Fluence

[ions/cm2]

Electrical conductivity [(Ω· cm)−1]

Pristine

6.84 × 10−09

5 × 1013

7.41 × 10−07

1 × 1014

7.45 × 10−07

5 × 1014

7.64 × 10−07

1 × 1015

1.06 × 10−06

5 × 1015

6.52 × 10−06

Calculated values of Se, Sn and projected range of 400 keV Au+ ions for CR-39.

Ion type

Energy

[keV]

Se

[eV/nm]

Sn

[eV/nm]

Range

[nm]

Au+

400

6.673 × 102

1.689 × 103

220

RMS roughness of pristine and 400 keV Au+ ion implanted CR-39 samples at different ion fluences.

Fluence [ions/cm2]

RMS roughness [nm]

Pristine

1.71

5 × 1013

8.95

5 × 1014

1.02

5 × 1015

0.66

Variation of optical band gap energy Eg [eV], % decrease in band gap energy and Urbach energy Eu [eV], with different implanted fluences of CR-39.

Fluence

[ions/cm2]

Optical band gap energy

Eg [eV]

% decrease in band

gap energy

Urbach energy

Eu [eV]

Pristine

3.15

0.17

5 × 1013

3.06

2.86

0.35

1 × 1014

2.94

6.67

0.68

5 × 1014

1.14

64

0.88

1 × 1015

1.10

65

0.90

5 × 1015

1.05

67

0.91

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties