Open Access

Structural and electrochemical investigation of waste newspaper based electrodes for supercapacitor applications


Cite

Fig. 1

X-ray diffraction patterns of (a) PCC, (b) AWNP 600, (c) AWNP 700, (d) AWNP 800 carbons
X-ray diffraction patterns of (a) PCC, (b) AWNP 600, (c) AWNP 700, (d) AWNP 800 carbons

Fig. 2

FT-IR spectra of (a) AWNP 600 (b) AWNP 700 and (c) AWNP 800 carbons.
FT-IR spectra of (a) AWNP 600 (b) AWNP 700 and (c) AWNP 800 carbons.

Fig. 3

Scanning electron micrographs of (a) PCC, (b) AWNP 600, (C) AWNP 700, (d) AWNP 800.
Scanning electron micrographs of (a) PCC, (b) AWNP 600, (C) AWNP 700, (d) AWNP 800.

Fig. 4

Adsorption-desorption isotherms of activated carbons PCC, AWNP 600, AWNP 700, AWNP 800 carbons.
Adsorption-desorption isotherms of activated carbons PCC, AWNP 600, AWNP 700, AWNP 800 carbons.

Fig. 5

Effect of compression pressure treatment on the electrical conductivity of the activated carbon samples.
Effect of compression pressure treatment on the electrical conductivity of the activated carbon samples.

Fig. 6

Cyclic voltammograms of (a) AWNP 600, (b) AWNP 700, (c) AWNP 800 using 1 M H2SO4 as electrolyte at different scan rates.
Cyclic voltammograms of (a) AWNP 600, (b) AWNP 700, (c) AWNP 800 using 1 M H2SO4 as electrolyte at different scan rates.

Fig. 7

Cyclic voltammogram of AWNP 800 at various scan rates ranging from 10 mV/s to 100 mV/s.
Cyclic voltammogram of AWNP 800 at various scan rates ranging from 10 mV/s to 100 mV/s.

Fig. 8

Nyquist plot of the as-prepared AWNP 800.
Nyquist plot of the as-prepared AWNP 800.

Fig. 9

Charge-discharge curves of AWNP 800 at fixed 2 Ag−1.
Charge-discharge curves of AWNP 800 at fixed 2 Ag−1.

Fig. 10

Cycling stability of AWNP 800 electrode.
Cycling stability of AWNP 800 electrode.

Fig. 11

Size and dimensions of the supercapacitor electrode.
Size and dimensions of the supercapacitor electrode.

Fig. 12

Schematic representation of AWNP 800 supercapacitor electrode cell.
Schematic representation of AWNP 800 supercapacitor electrode cell.

Sample code, surface area, pore volume, average pore diameter, and production yield of waste newspaper derived carbon.

Sample

SBeta${\rm{S}}_{{\rm{Bet}}}^{\rm{a}}$

[m2/g]

Smicb${\rm{S}}_{{\rm{mic}}}^{\rm{b}}$

[m2/g]

Smesoc${\rm{S}}_{{\rm{meso}}}^{\rm{c}}$

[m2/g]

VTotald${\rm{V}}_{{\rm{Total}}}^{\rm{d}}$

[cm3/g]

VMicroe${\rm{V}}_{{\rm{Micro}}}^{\rm{e}}$

[cm3/g]

VMesof${\rm{V}}_{{\rm{Meso}}}^{\rm{f}}$

[cm3/g]

VMicro/VTotal

[%]

VMeso/VTotal

[%]

Dpg${\rm{D}}_{\rm{p}}^{\rm{g}}$

[nm]

Production yield of carbon [%]

PCC

333.06

231.01

105.03

0.59

0.54

0.05

91.5

0.85

7.9

63.00

AWNP 600

621.25

371.39

250.07

0.96

0.77

0.19

80.2

19.7

7.8

55.66

AWNP 700

832.37

493.56

339.60

1.11

0.84

0.27

75.6

24.3

6.9

49.79

AWNP 800

1104.8

563.71

503.39

1.30

0.82

0.48

63.0

36.9

4.8

45.89

Characteristics of lab made supercapacitor.

Characteristics

Lab made supercapacitor

operating temperature range

-35 °C to +70 °C

Capacitance

100 F to 380 F

Rated voltage

1200 v to 3000 v(DC current) Protection against overvoltage

Tolerance

±10% to ±15 %

Dissipation factor

+0.5 × 10−3 (measured at 100 Hz and 25 °C)

Life expectancy

10,000 hours at 85 °C (life span of at least 20 years)

Environment friendly

Green product

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties