Open Access

Frequency and temperature dependent transport properties of NiCuZn ceramic oxide


Cite

A polycrystalline sample of ceramic oxide Ni0.27Cu0.10Zn0.63Fe2O4 was prepared by the solid state reaction method. The sintered sample was well polished to remove any oxide layer formed during sintering and the two surfaces of the pellet were coated with a silver paste as a contact material. Among dielectric properties, complex dielectric constant (ε* = εʹ - jεʺ), loss tangent (tanδ) and ac conductivity (σac) in the frequency range of 20 Hz to 2 MHz were analyzed in the temperature range of 303 to 498 K using a Wayne Kerr impedance analyzer (model No. 6500B). The experimental results indicate that ε, εʺ, tanδ and σac decrease with an increase in frequency and increase with increasing temperature. The transition temperature, as obtained from dispersion curve of εʹ, shifts towards higher temperature with an increase in frequency. The variation of dielectric properties with frequency and temperature shows the dispersion behavior which is explained in the light of Maxwell-Wagner type of interfacial polarization in accordance with the Koop’s phenomenological theory. The frequency dependent conductivity results satisfy the Jonscher’s power law, σT(ω) = σ(o)+Aωn, and the results show the occurrence of two types of conduction process at elevated temperature: (i) low frequency conductivity, due to long-range ordering (frequency independent, region I), (ii) mid frequency conductivity at the grain boundaries (region II, dispersion) and (iii) high frequency conductivity at the grain interior due to the short-range hopping mechanism (frequency independent plateau, region III).

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties