Open Access

A posteriori error estimates for mixed finite volume solution of elliptic boundary value problems


Cite

[1] I. Aavatsmark, T. Barkve, O. Boe, and T. Mannseth. Discretization on unstructured grids for inhomogeneous anisotropic media part1: Derivation of the methods. SIAM, Journal of scientific computing, 19(5):1700–1716, 1998.Search in Google Scholar

[2] L. Anh Ha and P. Omnes. An a posteriori error estimation for the discrete duality finite volume discretization of the stokes equations. ESAIM: M2AN, 49:663–693, 2015.10.1051/m2an/2014057Search in Google Scholar

[3] I. Babuška and W.C. Rheinbold. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal., 15:736–754, 1978.10.1137/0715049Search in Google Scholar

[4] C. Chainais-Hillairet and J. Droniou. Convergence analysis of a mixed finite volume scheme for an ellipticparabolic system modeling miscible fluid flows in porous media. SIAM, J. Numer. Anal., 45:2228–2258, 2007.10.1137/060657236Search in Google Scholar

[5] C. Chen, Y. Chen, and X. Zhao. A posteriori error estimates of two-grid finite volume element methods for nonlinear elliptic problems. Computers & Mathematics with Applications, 75:1756–1766, 2018.10.1016/j.camwa.2017.11.035Search in Google Scholar

[6] S. Cochez-Dhont, S. Nicaise, and S. Repin. A posteriori error estimates for finite volume approximations. Math. Model. Nat. Phenom., 4:106–122, 2009.10.1051/mmnp/20094105Search in Google Scholar

[7] L. B. Da Veiga and G. Manzini. An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems. Comput. Methods Appl. Mech. Engrg, 76:1696–1723, 2008.10.1002/nme.2377Search in Google Scholar

[8] K. Domelevo and P. Omnes. A finite volume method for the laplace equation on almost arbitrary twodimensional grids. ESAIM, Math. Mod. Numer. Anal., 39(6):1203–1249, 2005.10.1051/m2an:2005047Search in Google Scholar

[9] J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math., 105:35–71, 2006.10.1007/s00211-006-0034-1Search in Google Scholar

[10] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Model. Meth. Appl. Sci., 20(2):265–295, 2010.10.1142/S0218202510004222Search in Google Scholar

[11] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. Gradient schemes: a generic framework for the discretization of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Model. Meth. Appl. Sci., 23(13):2395–2432, 2013.Search in Google Scholar

[12] R. Eymard, T. Gallouët, and R. Herbin. Finite volume approximation of elliptic problems and convergence of approximate gradient. Applied Numerical Mathematic, 37:31–53, 2001.10.1016/S0168-9274(00)00024-6Search in Google Scholar

[13] H. Hakula, M. Neilan, and J.S. Ovall. A posteriori estimates using auxiliary subspace techniques. Journal of Scientific Computing, 72:97–127, 2017.10.1007/s10915-016-0352-0Search in Google Scholar

[14] F. Hermeline. A finite volume method for approximating 3D diffusion operators on general meshes. J. Comput. Phys., 228:5763–5786, 2009.10.1016/j.jcp.2009.05.002Search in Google Scholar

[15] A. Mahamane. Analysis of the mixed finite volume scheme for a convection–diffusion equation. Finite Volumes for Complex Applications R. Eymard and J.-M. Hérard (eds), V:569–576, 2008.Search in Google Scholar

[16] S. Nicaise. A posteriori error estimations of some cell centered finite volume methods for convection- diffusion-reaction problems. SIAM, J. Numer. Anal., 44:949–978, 2006.10.1137/040611483Search in Google Scholar

[17] P. Omnes, Y. Penel, and Y. Rosenbaum. A posteriori error estimation for the discrete duality finite volume discretization of the the laplace equation. SIAM, J. Numer. Anal., 47:2782–2807, 2009.10.1137/080735047Search in Google Scholar

[18] R. Herbin R. Eymard, T. Gallouët. Finite Volume Methods, Handbook of Numerical Analysis. Elsevier Science, 2000.10.1016/S1570-8659(00)07005-8Search in Google Scholar

[19] J.R. Shewchuk. Triangle Engineering a 2D quality mesh generator and delaunay triangulator in Applied Computational Geometry: Towards Geometric Engineering Lecture Notes in Comput. Sci. 1148, M. C. Lin and D. Manocha, eds. Springer-Verlag, Berlin, 1996.10.1007/BFb0014497Search in Google Scholar

[20] R. Verfurth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley/Teubner, Stuttgart, 1996.Search in Google Scholar

[21] M. Vohralík. A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations. SIAM, J. Numer. Anal., 45:1570–1599, 2007.10.1137/060653184Search in Google Scholar

[22] M. Vohralík. Residual flux-based a posteriori error estimates for finite volume discretizations of inhomogeneous, anisotropic, and convection-dominate problems. Numer. Math., 1:121–158, 2008.10.1007/s00211-008-0168-4Search in Google Scholar