Cite

Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121-142. DOI: 10.1016/j.geoderma.2004.01.003.10.1016/j.geoderma.2004.01.003Open DOISearch in Google Scholar

Antonkiewicz, J. (2007). Influence of different ash-sludge and ash-peat mixtures on the yield and elements content of a grass and birdsfoot trefoil mixted stand. Part II. Heavy metals. Zeszyty Problemów Postępów Nauk Rolniczych, 520, 265-278 [in Polish].Search in Google Scholar

Bada, S. O., & Potgieter-Vermaak, S. (2008). Evaluation and treatment of coal fly ash for adsorption application. Leonardo Electronic Journal of Practices and Technologies, 12, 37-48.Search in Google Scholar

Barrow, N. J. (1999). The four laws of soil chemistry: The Lepper lecture 1998. Australian Journal of Soil Research 37, 787-829.10.1071/SR98115Search in Google Scholar

Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127, 3-82. DOI: 10.1016/S0269- 7491(03)00250-1.10.1016/S0269-7491(03)00250-1Open DOISearch in Google Scholar

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of American Chemical Society 60, 309-319. DOI: 10.1021/ja01269a023.10.1021/ja01269a023Open DOISearch in Google Scholar

Bradshaw, A. (2000). The use of natural processes in reclamation - Advantages and Difficulties. Landscape and Urban Planning, 51(2-4), 89-100. DOI: 10.1016/S0169-2046(00)00099-2.10.1016/S0169-2046(00)00099-2Open DOISearch in Google Scholar

Carlon, C., Norbiato, M., Critto, A., & Marcomini, A. (2000). Risk analysis applied to a contaminated industrial site: Determination of risk based remedial targets. Annale Chimica, 90, 349-358.Search in Google Scholar

Carter, D. L., Mortland, M. M., & Kemper, W. D. (1986). Specific Surface. Methods of Soil Analysis. Chapter 16, Agronomy, No. 9, Part 1, 2nd Ed., American Society of Agronomy.10.2136/sssabookser5.1.2ed.c16Search in Google Scholar

Ciccu, R., Ghiani M., Peretti, R., Serci A., & Zucca A. (2001). Heavy metal immobilisation using fly ash in soil contaminated by mine activity. International Ash Utilization Symposium. Center for Applied Energy Research, University of Kentucky. Paper #6 (www.flyash.info).Search in Google Scholar

Circular Economy Package (CEP): http://ec.europa.eu/environment/circular-economy (Entry 15.07.2017) de Jong, E. (1999). Comparison of three methods of measuring surface area of soils. Canadian Journal of Soil Science 79, 345-351. DOI: 10.4141/S98-069.10.4141/S98-069Open DOISearch in Google Scholar

Diatta, J. B., Grzebisz, W., & Wiatrowska, K. (2004). Competitivity, selectivity, and heavy metals-induced alkaline cation displacement in soils. Soil Science and Plant Nutrition, 50(6), 899-908. DOI: 10.1080/00380768.2004.10408552.10.1080/00380768.2004.10408552Open DOISearch in Google Scholar

Diatta, J. B., Grzebisz, W., & Wiatrowska, K. (2007). Assessment of copper and zinc stabilization process in soils after the application of brown coal, sugar beet leaves and cement. Ecological Chemistry and Engineering, 14(2),181-189.Search in Google Scholar

Diatta, J. B., & Chudzińska, E. (2009). Chemical remediation of zinc contaminated soils by applying a cementbrown coal-based component (CEMBRO). Ochrona Środowiska i Zasobów Naturalnych, 41, 89-101.Search in Google Scholar

Diatta, J. B., Skubiszewska, A., & Witczak R. (2009). Assessment of chemical degradation of selected soil properties as induced by copper, zinc and hydrogen. Ecological Chemistry and Engineering A, 16, 1-10.Search in Google Scholar

Diatta, J. B., Komisarek, J., & Wiatrowska, K. (2012). Evaluation of heavy metals competitive sorption and potential mobility on the basis of Cu/Cd and Zn/Pb binary systems. Fresenius Environmental Bulletin, 21(5), 1105-1109.Search in Google Scholar

Fotovat, A., Naidu, R., & Sumner M. E. (1997). Water: soil ratio influences aqueous phase chemistry of indigenous copper and zinc in soils. Australian Journal of Soil Research 35, 687-709. DOI: 10.1071/S96086.10.1071/S96086Open DOISearch in Google Scholar

Gajda, A., Jaworski W., & Barc W. (2002). Prognosis in the production of coal combustion by-products at professional power stations to 2015. Biuletyn Miesięczny PSE SA, 11(137), 2-14 [in Polish].Search in Google Scholar

Gluzińska, J. Walawska B., & Łuczkowska D. (2016). Properties of waste fly ash as a hard coal combustion byproduct after the application of dry sodium sorbents to purify flue gases. Prace Instytutu Mechaniki Górotworu PAN, 18(3), 83-91 [in Polish].Search in Google Scholar

Gregg, S. J., & Sing, K. S. W. (1967). Adsorption, Surface Area and Porosity. Academic Press Inc, London, UK, p. 44-50.10.1149/1.2426447Search in Google Scholar

Gupta, S. K., Herren, T., Wenger, K., Krebs, R., & Hari, T. (2000). In-situ gentle remediation measures for heavy metal-polluted soils, [in:] Phytoremediation of contaminated soil and water. Soil and Water Pollution , CRC Press LLC, p. 303-322.Search in Google Scholar

Hycnar, J. J., Szczygielski, T., Lysek, N., & Rajczyk, K. (2014). Trends in the optimalisation of the management of coal combustion by-products. Piece Przemysłowe i Kotły, 5-6,16-27 [in Polish].Search in Google Scholar

Ibekwe, A. M, Angle, J. S, Chaney, R. L, & Van Berkum, P. (1997). Enumeration and N2 fixation potential of Rhizobium leguminosarum biovar trifolii grown in soil with varying pH values and heavy metal concentrations. Agriculture Ecosystems and Environment 61,1679-1685.10.1016/S0167-8809(96)01106-1Search in Google Scholar

International Standard (1995). Soil quality - Extraction of trace elements soluble in aqua regia, ISO 11466 Geneva.Search in Google Scholar

Kabata-Pendias, A., Motowicka-Terelak, T., Piotrowska, M., Terelak, H., & Witek, T. (1993). Evaluation of the degree of soils and plants contamination by heavy metals and sulphur. Framework guidelines for agriculture. IUNG Puławy P(53), 20 p. (in Polish).Search in Google Scholar

Krebs, R., Gupta, S. K., Furrer, & Schulin, G. R. (1999). Gravel sludge as immobilizing agent in soils contaminated by heavy metals: a field study. Water, Air and Soil Pollution, 115, 465-479. DOI: 10.1023/A:1005167004828.10.1023/A:1005167004828Open DOISearch in Google Scholar

Kumpiene, J., Lagerkvist A., & Maurice C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Management 28, 215-225. DOI: 10.1016/j.wasman.2006.12.012.10.1016/j.wasman.2006.12.012Open DOISearch in Google Scholar

Lombi, E., Hamon, R. E., McGrath, S. P. & Mc-Laughlin, M. J. (2003). Lability of Cd, Cu and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environmental Science and Technology, 37(5), 979-984. DOI: 10.1021/es026083w.10.1021/es026083wOpen DOISearch in Google Scholar

Łączny, M. J. (2002). Non-conventional method of utilization of fly ash. Central Mining Institute, Katowice, pp. 7-19.Search in Google Scholar

Matsi, T. & Keramidas, V. Z. (1999). Fly ash application on two acid soils and its effect on soil salinity, pH, B, P and ryegrass growth and composition. Environmental Pollution, 104(1), 107-112. DOI: 10.1016/S0269- 7491(98)00145-6.10.1016/S0269-7491(98)00145-6Open DOISearch in Google Scholar

McBride, M. B., Sauvé, S., & Hendershot W. (1997). Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science, 48, 337-346. DOI: 10.1111/j.1365-2389.1997.tb00554.x.10.1111/j.1365-2389.1997.tb00554.xOpen DOISearch in Google Scholar

McGowen, S. L. (2000). In-situ chemical treatments for reducing metal solubility and transport in smelter contaminated soils. Ph.D. Diss. Dep. Plant and Soil Sciences, Oklahoma State Univ., Stillwater, OK.Search in Google Scholar

Mench, M., Vangronsveld, J., Lepp, N. W., & Edwards, R. (1998). Physicochemical aspects and efficiency of trace element immobilization by soil amendments. In: J. Vangronsveld and S. D. Cunningham (editors): Metal-Contaminated Soils: In-situ inactivation and phytorestoration, pp. 151-182. Springer Verlag, Berlin Heidelberg. ISBN: 1-57059-531-3.Search in Google Scholar

Mohapatra, R., & Rao, J. R. (2001). Some aspects of characterisation, utilisation and environmental effects of fly ash (a Review). Journal of Chemical Technology and Biotechnology, 76(1), 9-26. DOI: 10.1002/1097- 4660(200101)76:1<9::AID-JCTB335>3.0.CO;2-5.10.1002/1097-4660(200101)76:1<9::AID-JCTB335>3.0.CO;2-5Open DOISearch in Google Scholar

Oste, L. A., Lexmond, T. M. & Van Riemsdijk, W. H. (2002). Metal immobilization in soils using synthetic zeolites. Journal of Environmental Quality, 31(3), 813-821.10.2134/jeq2002.8130Search in Google Scholar

Percival, H. J, Speir, T. W, & Parshotam, A. (1999). Soil solution chemistry of contrasting soils amended with heavy metals. Australian Journal of Soil Research 37, 993-1004. DOI: 10.1071/SR98055.10.1071/SR98055Open DOISearch in Google Scholar

Polish Standard (1994). Polish Standardisation Committee, ref. PrPN-ISO 10390 (E): Soil quality and pH determination. First edition (in Polish).Search in Google Scholar

Querol, A. A., Moreno, N., Alvarez-Ayuso, E., García-Sánchez, A., Cama, J., Ayora, C. & Simón, M. (2005). Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere, 62(2), 171-180. DOI: 10.1016/j.chemosphere.2005.05.029.10.1016/j.chemosphere.2005.05.029Open DOISearch in Google Scholar

Ramme, B. W., & Tharaniyil, M. P. (2013). We Energies - Coal Combustion Products Utilization Handbook. Copyright 2013, Wisconsin Electric Power Company. 3rd Edition, Manufactured in the United States of America, 448 p.Search in Google Scholar

Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In: Sparks D.L. et al. (ed). Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI, 417-435.10.2136/sssabookser5.3.c14Search in Google Scholar

Robl, T., Mahboub, K., Will, S., & Robert R. (2010). Fluidized bed combustion ash utilization: CFBC fly ash as a pozzolanic additive to Portland cement concrete. Coventry University and the University of Wisconsin Milwaukee Centre for By-products Utilization. Second International Conference on Sustainable Construction Materials and Technologies (June 28-30, 2010). Universita Politecnica delle Marche, Ancona, Italy. Special Technical Proceedings ed. Claisse, P., Ganjian, E., Canpolat, F., & Naik, T. (ISBN 978-1-4507-1488-4).Search in Google Scholar

Sanderson, R. (1989). Electronegativity and bond energy. Journal of American Chemical Society, 105(8), 2259-2261.10.1021/ja00346a026Search in Google Scholar

Sarbak, Z., & Kramer-Wachowiak, M., 2012: The use of fly ash as sorbents for heavy metals. Przemysł Chemiczny, 91(2), 189-192 [in Polish].Search in Google Scholar

Schutter, M. E., & Fuhrmann, J. J. (2001). Soil microbial community responses to fly ash amendment as revealed by analyses of whole soils and bacterial isolates. Soil Biology and Biochemistry 33(14), 1947-1958.10.1016/S0038-0717(01)00123-7Search in Google Scholar

Singh, S. D. C. & Shea, P. J. (1999). Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH. Environmental Science and Technology, 33(9), 1488-1494. DOI: 10.1021/es9806175.10.1021/es9806175Open DOISearch in Google Scholar

Sparks, D. L. (1995). Environmental soil chemistry. Academic Press Inc. San Diego, California: 267 p. Stevens, G., & Dunn, D. (2004). Fly ash as a liming material for cotton. Journal of Environmental Quality, 33(1), 343-348. DOI: 10.2134/jeq2004.0343.10.2134/jeq2004.0343Open DOISearch in Google Scholar

Szymańska, I. (2013). Combustion By-Products - waste, product, raw material. www.surowiec-naturalne.pl [in Polish]Search in Google Scholar

Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R. & Nowack, B., (2004). Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science and Technology, 38(3), 937-944. DOI: 10.1021/es0348750.10.1021/es034875014968886Open DOISearch in Google Scholar

Thomas, G.W. (1982): Exchangeable cations. (p. 159-165). Methods of Soil Analysis, Part 2. Chemical and Microbial Properties (No. 9), ASA-SSSA. Second Edition. Edited by Page A. L., Miller, R. H. & Keeney D.R. Madison, Wisconsin, USA10.2134/agronmonogr9.2.2ed.c9Search in Google Scholar

Terzano, R., Spagnuolo, M., Medici, L., & Ruggiero, P. (2004). Stabilization of Cu and Cd in the presence of montmorillonite by means of coal fly ash. Fresenius Environmental Bulletin 13(10), 995-999.Search in Google Scholar

Ulmanu, M., Matsi, T., Anger, I., Gament, E., Olanescu, G., Predescu, C., Sohaciu, M. (2007). The remedial treatment of soil polluted with heavy metals using fly ash. University Politehnica București Scientific Bulletin B/69(2), 109-116.Search in Google Scholar

Wei, Y. L., Yang, Y. W. & Cheng, N. (2001). Study of thermally immobilized Cu in analogue minerals of contaminated soils. Environmental Science and Technology, 35(2), 416-421. DOI: 10.1021/es0008721.10.1021/es000872111347619Open DOISearch in Google Scholar

Właśniewski, S. (2009). Effect of fertilization with fly ash from black coal on some chemical properties of sandy soil and yields of oat. Ochrona Środowiska i Zasobów Naturalnych, 41, 479-488.Search in Google Scholar

Xiao, R., Chen, X., Wang, F., & Yu, G. (2011). The physicochemical properties of different biomass ashes at different ashing temperature. Renewable Energy 36, 244-249. DOI: 10.1016/j.renene.2010.06.027.10.1016/j.renene.2010.06.027Open DOISearch in Google Scholar

eISSN:
1899-8526
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, Geophysics, other