Open Access

Characteristics of Sorbent Products Obtained by the Alkaline Activation of Waste from Waste Incineration Plants


Cite

Aiello, R., Giordano, G., & Testa, F. (2002). Impact of zeolites and other porous materials on the new technologies at the beginning of the new millennium; Elsevier Science.Search in Google Scholar

Armbruster, T., & Gunter, M. E. (2001). Crystal structures of natural zeolites. In D.L. Bish & D.W. Ming (Eds) Natural Zeolites: Occurrence, Properties, Applications. Washington, D.C., pp.1-67. Reviews in Mineralogy and Geochemistry.10.1515/9781501509117-003Search in Google Scholar

Belviso, C., Cavalcante, F., & Fiore, S. (2010). Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using sea water instead of distilled water. Waste Management, 30(5), 839-847. DOI: 10.1016/j.wasman.2009.11.015.10.1016/j.wasman.2009.11.01520034779Open DOISearch in Google Scholar

Chang, K. L., & Shih, W. H. (1998). A general method for the conversion of fly ash into Zeolites as ion exchangers for cesium. Industrial & Engineering Chemistry Research, 37(1), 71-78. DOI: 10.1021/ie970362o.10.1021/ie970362oOpen DOISearch in Google Scholar

Charles, H. K. Lam, Alvin, W. M. Ip., Barford, J. P., & McKay, G. (2010). Use of Incineration MSW Ash: A Review. Sustainability, 2, 1943-1968. DOI:10.3390/su2071943.10.3390/su2071943Open DOISearch in Google Scholar

Chiang, Y. W., Ghyselbrecht K., Santos, R. M., Meesschaert, B., & Martens, J. A. (2012). Synthesis of zeolitictype adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catalysis Today, 190(1), 23-30. DOI: 10.1016/j.cattod.2011.11.002.10.1016/j.cattod.2011.11.002Open DOISearch in Google Scholar

Chica, A. (2013). Zeolites: Promised Materials for the Sustainable Production of Hydrogen. ISRN Chemical Engineering, DOI: 10.1155/2013/907425.10.1155/2013/907425Open DOISearch in Google Scholar

Derkowski, A., Franus, W., Beran, E., & Czimerova, A. (2006). Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technology, 166, 47-54. DOI: 10.1016/j.powtec.2006.05.004.10.1016/j.powtec.2006.05.004Open DOISearch in Google Scholar

Fotovat, F., Kazemian, H., & Kazemeini, M. (2009). Synthesis of Na-A and faujasitic zeolites from high silicon fly ash. Materials Research Bulletin, 44(2), 913-917. DOI: 10.1016/j.materresbull.2008.08.008.10.1016/j.materresbull.2008.08.008Open DOISearch in Google Scholar

Franus, W., Wdowin, M., & Franus, M. (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment, 186, 5721-5729. DOI: 10.1007/s10661-014-3815-5.10.1007/s10661-014-3815-5411205324838802Open DOISearch in Google Scholar

Grela, A., Łach, M., Mikuła, J., & Hebda, M. (2016 a). Thermal analysis of the products of alkali activation of fly ash from CFB boilers. Journal of Thermal Analysis and Calorimetry, 123(2), 1609-1621. DOI: 10.1007/s10973-016-5257-5.10.1007/s10973-016-5257-5Open DOISearch in Google Scholar

Grela, A., Hebda, M., Łach, M., & Mikuła, J. (2016 b). Thermal behavior and physical characteristics of synthetic zeolite from CFB-coal fly ash. Microporous and Mesoporous Materials, 220, 155-162. DOI: 110.1016/j.micromeso.2015.08.036.10.1016/j.micromeso.2015.08.036Search in Google Scholar

Grela, A., & Bajda, T., (2017). Usuwanie wybranych związków biogennych z roztworów wodnych z wykorzystaniem metakaolniu i zmodyfikowanego metakaolinu. Inżynieria Ekologiczna, 18(2), 30-38. DOI: 10.12912/23920629/68339.10.12912/23920629/68339Search in Google Scholar

Gupta, V. K., Ali, I., Saini, V.K, Van Gerven. T., Van Bruggen, B. D., & Vandecasteele, C. (2005). Removal of dyes from wastewater using bottom ash. Industrial & Engineering Chemistry Research, 44(10), 3655-3664. DOI: 10.1021/ie0500220.10.1021/ie0500220Search in Google Scholar

Hollman, G. C., Steenbruggen, G., & Janssen-Jurkovicova, M. (1999). A two step process for the synthesis of zeolites from coal fly ash. Fuel, 78 (10), 1225-123. DOI: 10.1016/S0016-2361(99)00030-7.10.1016/S0016-2361(99)00030-7Search in Google Scholar

Inada, M., Eguchi, Y., Enomoto, N., & Hojo, J. (2005). Synthesis of zeolite from coal fly ashes with different silica-alumina composition. Fuel, 84 (2-3), 299-304. DOI: 10.1016/j.fuel.2004.08.012.10.1016/j.fuel.2004.08.012Open DOISearch in Google Scholar

Łach, M., Mikuła, J., & Hebda, M. (2016). Thermal analysis of the by-products of waste combustion. Journal of Thermal Analysis and Calorimetry, 125(3), 1035-1045. DOI: 10.1007/s10973-016-5512-9.10.1007/s10973-016-5512-9Open DOISearch in Google Scholar

Łącka-Matusiewicz, M., &Fraś, K. (2012), Wpływ zagospodarowania ubocznych produktów spalania węgla na redukcję emisji CO2 do środowiska [w:] Popioły z energetyki. XI Międzynarodowa Konferencja pt. „Popioły z Energetyki". (red.) Szczygielski T., 19, 131-150.Search in Google Scholar

Miyake, M., Tamura, Ch., & Matsuda, M. (2002). Resource Recovery of Waste Incineration Fly Ash: Synthesis of Zeolites A and P. Journal of the American Ceramic Society, 85(7), 1873-75. DOI: 10.1111/j.1151-2916.2002.tb00368.x.10.1111/j.1151-2916.2002.tb00368.xOpen DOISearch in Google Scholar

Morency, J. R., Panagiotou, T., & Senior, C. L. (2002). Zeolite sorbent that effectively removes mercury from flue gases. Filtration & Separation, 39(7), 24-26. DOI: 10.1016/S0015-1882(02)80207-5.10.1016/S0015-1882(02)80207-5Open DOISearch in Google Scholar

Pająk, T. (1996). Dioksyny w procesie spalania odpadów komunalnych - zagrożenia, normy, aktualna sytuacja, przeciwdziałanie. Rocznik Państwoweg Zakładu Higieny,47(1), 105-119. Querol, X., Alastuey, A., Fernandez-Turiel, J. L., & Lopez-Soler, A. Synthesis of zeolites by alcaline activation of ferro-aluminous fly ash. Fuel, 74(8), 1226-1231.Search in Google Scholar

Rodziewicz, J., Mielcarek, A., Kłodowska, I., Janczukowicz, W., Choińska-Żurek, E., & Wolter A. (2016). Usuwanie fosforu na filtrach z wypełnieniem z granulatu z popiołów ze spalania osadów ściekowych. Inżynieria Ekologiczna, 48, 186-190. DOI: 10.12912/23920629/63273.10.12912/23920629/63273Search in Google Scholar

Sallam, M., Carnahan, R. P., Zayed, A., & Sunol, S. (2008). Recycling of Municipal Solid Waste Ash through an Innovative Technology to Produce Commercial Zeolite material of High Cation Exchange Capacity, Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference May 19-21, 2008, Philadelphia, Pennsylvania, USA. DOI: 10.1115/NAWTEC16-1919.10.1115/NAWTEC16-1919Open DOISearch in Google Scholar

Shim, Y. S., Kim, Y. K., Kong, S. H., Rhee, S. W., & Lee, W. K. (2003). The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Management, 23(9), 851-857. DOI: 10.1016/S0956-053X(02)00163-0.10.1016/S0956-053X(02)00163-0Open DOISearch in Google Scholar

Tamura, Ch., Matsuda, M., & Miyake, M. (2006). Conversion of Waste Incineration Fly Ash into Zeolite A and Zeolite P by Hydrothermal Treatment. Journal of the Ceramic Society of Japan, 114(2), 205-209. DOI: 10.2109/jcersj.114.205.10.2109/jcersj.114.205Open DOISearch in Google Scholar

Tao, Y., Kanoh, H., Abrams, L., & Kaneko, K. (2006). Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews , 106(3), 896-910. DOI: 10.1021/cr040204o.10.1021/cr040204oOpen DOISearch in Google Scholar

Wdowin, M., Franus, W., & Panek, R. (2012). Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresenius Environmental Bulletin, 21(12), 3726-3734.Search in Google Scholar

Wdowin, M., Wiatros-Motyka, M., Panek, R., Stevens L. A., Franus W., & Snape C. E. (2014). Experimental study of mercury removal from exhaust gases. Fuel, 128, 451-457. DOI: 10.1016/j.fuel.2014.03.041.10.1016/j.fuel.2014.03.041Open DOISearch in Google Scholar

Wielgosiński, G., & Naniecińska, O. (2016). Spalanie odpadów komunalnych - perspektywa roku 2020. Nowa Energia, 2, 1-15.Search in Google Scholar

Yang, G. C., & Yang, T. Y. (1998). Synthesis of zeolites from municipal incinerator fly ash. Journal of Hazardous Materials, 62, 75-89. DOI: 10.1016/S0304-3894(98)00163-0.10.1016/S0304-3894(98)00163-0Open DOISearch in Google Scholar

eISSN:
1899-8526
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, Geophysics, other