Open Access

Efficiency of Pb(II) and Mo(VI) Removal by Kaolinite Impregnated with Zero-Valent Iron Particles


Cite

Arancibia-Miranda, N., Baltazar, S. E., García, A., Romero, A. H., Rubio, M. A., & Altbir, D. (2014). Lead removal by nano-scale zero valent iron: surface analysis and pH effect. Materials Research Bulletin, 59, 341-348. DOI: 10.1016/j.materresbull.2014.07.045.10.1016/j.materresbull.2014.07.045Open DOISearch in Google Scholar

Azizian, S. (2004) Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276, 47-52. DOI: 10.1016/j.jcis.2004.03.048.10.1016/j.jcis.2004.03.04815219428Open DOISearch in Google Scholar

Balan, E., Saitta, A. M., Mauri, F., & Calas, G. (2001). First-principles modeling of the infrared spectrum of kaolinite. American Mineralogist, 86, 1321-1330. DOI: 10.2138/am-2001-11-1201.10.2138/am-2001-11-1201Open DOISearch in Google Scholar

Bhattacharyya, K. G., & Gupta, S. S. (2006). Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption, 12(3), 185-204. DOI:10.1007/s10450-006-0145-0.10.1007/s10450-006-0145-0Open DOISearch in Google Scholar

Bhattacharyya, K. G., & Gupta, S. S. (2007). Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: Influence of acid activation. Journal of Colloid and Interface Science, 310(2), 411-424. DOI: 10.1016/j.jcis.2007.01.080.10.1016/j.jcis.2007.01.08017368467Open DOISearch in Google Scholar

Crane, R., & Scott T. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211-212, 112-125. DOI: 10.1016/j.jhazmat.2011.11.073.10.1016/j.jhazmat.2011.11.07322305041Open DOISearch in Google Scholar

Erdem, E., Karapinar, N., & Donat R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280( 2), 309-314. DOI: 10.1016/j.jcis.2004.08.028.10.1016/j.jcis.2004.08.02815533402Open DOISearch in Google Scholar

Grieger, K., Fjordbøge, A., Hartmann, N., Eriksson, E., Bjerg, P., & Baun A. (2010). Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off?. Journal of Contaminant Hydrology, 118, 165-183. DOI: 10.1016/j.jconhyd.2010.07.011.10.1016/j.jconhyd.2010.07.01120813426Open DOISearch in Google Scholar

Hudcova, B., Veselska, V., Filip, J., Cíhalova, S., & Komarek M. (2016). Sorption mechanisms of arsenate on Mg-Fe layered double hydroxides: A combination of adsorption modeling and solid state analysis. Chemosphere, 168, 539-548. DOI: 10.1016/j.chemosphere.2016.11.031.10.1016/j.chemosphere.2016.11.03127839879Open DOISearch in Google Scholar

Kim, S. A., Kamala - Kannan, S., Lee, K.- J., Park, Y.- J., Shea, P. J., Lee, W.- H., Kim, H.- M., & Oh, B.- T. (2013). Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chemical Engineering Journal, 217, 54-60. DOI: 10.1016/j.cej.2012.11.097.10.1016/j.cej.2012.11.097Open DOISearch in Google Scholar

Koteja, A., Biskup, I., Góra, K., & Matusik, J. (2015). Organo-kaolinite as an adsorbent of Cr(III) and Ni(II) ions. In Bajda T., Hycnar E., (Eds.) Sorbenty mineralne 2015: surowce, energetyka, ochrona środowiska, nowoczesne technologie, 131-143, Kraków, Wydawnictwo AGH.Search in Google Scholar

Koteja, A., & Matusik, J. (2015). Di- and triethanolamine grafted kaolinites of different structural order as adsorbents of heavy metals. Journal of Colloid and Interface Science, 455, 83-92. DOI: 10.1016/j.jcis.2015.05.027.10.1016/j.jcis.2015.05.027Open DOISearch in Google Scholar

Leupin, O. X., & Hug, S. J. (2005). Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Research, 39, 1729-1740. DOI: 10.1016/j.watres.2005.02.012.10.1016/j.watres.2005.02.012Open DOISearch in Google Scholar

Li, S., Wang, W., Liang, F., & Zhang, W. (2016). Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of hazardous materials, 322, 163-171. DOI: 10.1016/j.jhazmat.2016.01.032.10.1016/j.jhazmat.2016.01.032Open DOISearch in Google Scholar

Liu, J., Yuan, S. W., Du, H. Y., & Jiang, X. Y. (2014). Adsorption of Cd(II) from Aqueous Solution by Magnetic Graphene. Advanced Materials Research, 881-883, 1011-1014. DOI: 10.4028/www.scientific.net/AMR.881-883.1011.10.4028/www.scientific.net/AMR.881-883.1011Open DOISearch in Google Scholar

Matusik, J. (2014). Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chemical Engineering Journal, 246, 244-253. DOI: 10.1016/j.cej.2014.03.004.10.1016/j.cej.2014.03.004Open DOISearch in Google Scholar

Meunier, N., Drogui, P., Montane, C., Hausler, R., Mercier, G., & Blais, J. F. (2006). Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. Journal of Hazardous Materials, 137, 581-590. DOI: 10.1016/j.jhazmat.2006.02.05010.1016/j.jhazmat.2006.02.050Open DOISearch in Google Scholar

Oehmen, A., Viegas, R., Velizarov, S., Reis, M. A. M., & Crespo, J. G. (2006). Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor. Desalination, 199, 405-407. DOI: 10.1016/j.desal.2006.03.091.10.1016/j.desal.2006.03.091Open DOISearch in Google Scholar

Patnukao, P., Kongsuwan, A., & Pavasant, P. (2008). Batch studies of adsorption of copper and Pb(II) on activated carbon from Eucalyptus camaldulensis Dehn, bark. Journal of Environmental Sciences, 20, 1028-1034. DOI: 10.1016/S1001-0742(08)62145-2.10.1016/S1001-0742(08)62145-2Open DOISearch in Google Scholar

Ponder, S., Darab, J., & Mallouk, T. (2000). Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron. Environmental Science & Technology, 34, 2564-2569. DOI: 10.1021/es9911420.10.1021/es9911420Open DOISearch in Google Scholar

Prabu, D., & Parthiban, R. (2013). Synthesis and characterization of nanoscale zero-valent iron (NZVI) nanoparticles for environmental remediation. Asian Journal of Pharmacy and Technology, 3(4), 181-184.Search in Google Scholar

Ramos, M. A. V., Yan, W. L., Li, X. Q., Koel, B. E., & Zhang, W. X. (2009). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. Journal of Physical Chemistry C, 113, 14591-14594. DOI:10.1021/jp9051837.10.1021/jp9051837Open DOISearch in Google Scholar

Ren, X. M., Li, J. X., Tan, X. L., & Wang, X. K. (2013). Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions, 42, 5266-5274. DOI: 10.1039/C3DT32969K.10.1039/C3DT32969Open DOISearch in Google Scholar

Rui, M., Buruberri, L. H., Seabra, M. P., & Labrincha, J. A. (2016). Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters, Journal of Hazardous Materials, 318, 631-640. DOI: 10.1016/j.jhazmat.2016.07.059.10.1016/j.jhazmat.2016.07.059Open DOISearch in Google Scholar

Rybka, K. (2017). Efektywność oczyszczania roztworów wodnych z wybranych anionów przez nanokompozyty otrzymane na bazie kaolinitu ze złoża Maria III, (Efficiency of selected anions removal from aqueous solutions by nanocomposites derived from Maria III kaolinite.), MSc thesis, AGH University of Science and Technology, Krakow, Poland. [in Polish].Search in Google Scholar

Saada, A., Breeze, D., Crouzet, C., Cornu, S., & Baranger , P. (2003). Adsorption of arsenic(V) on kaolinite and on kaolinite-humic acid complexes: Role of humic acid nitrogen groups. Chemosphere, 51(8), 757-763. DOI: 10.1016/S0045-6535(03)00219-4.10.1016/S0045-6535(03)00219-4Search in Google Scholar

Scott, T. B., Popescu, I. C., Crane, R. A., & Noubactep, C. (2011). Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. Journal of hazardous materials, 186, 280-287. DOI: 10.1016/j.jhazmat.2010.10.113.10.1016/j.jhazmat.2010.10.113Open DOISearch in Google Scholar

Suraj, G., Iyer, C. S. P., & Lalithambika, M. (1998). Adsorption of cadmium and copper by modified kaolinites. Applied Clay Science, 13(4), 293-306. DOI: 10.1016/S0169-1317(98)00043-X.10.1016/S0169-1317(98)00043-XOpen DOISearch in Google Scholar

Szala, B., Bajda, T., Matusik, J., Zięba, K., & Kijak, B. (2015). BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA. Microporous and Mesoporous Materials, 202, 115-123. DOI: 10.1016/j.micromeso.2014.09.033.10.1016/j.micromeso.2014.09.033Open DOISearch in Google Scholar

Unuabonah, E. I., Adebowale, K. O., Olu-Owolabi, B. I., Yang, L. Z., & Kong L. X. (2008). Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy, 93, 1-9. DOI: 10.1016/j.hydromet.2008.02.009.10.1016/j.hydromet.2008.02.009Open DOISearch in Google Scholar

Üzüm, Ç., Shahwan, T., Eroğlu, A. E., Hallam, K. R., Scott, T. B., & Lieberwirth, I. (2009). Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Applied Clay Science, 43(2), 172-181. DOI: 10.1016/j.clay.2008.07.030.10.1016/j.clay.2008.07.030Open DOISearch in Google Scholar

Üzüm, Ç., Shahwan, T., Eroğlu, A. E., Lieberwirth, I., Scott, T. B., Hallam, K. R. (2008). Application of zerovalent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. The Chemical Engineering Journal, 144(2), 213-220. DOI: 10.1016/j.cej.2008.01.024.10.1016/j.cej.2008.01.024Open DOISearch in Google Scholar

Wang, C., & Zhang, W. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBS. Environmental Science & Technology, 31, 2154-2156. DOI: 10.1021/es970039c.10.1021/es970039cOpen DOISearch in Google Scholar

Wang, J., Liu, G., Li, T., Zhou, C., & Qi, C. (2015). Zero-Valent Iron Nanoparticles (NZVI) Supported by Kaolinite for CuII and NiII Ion Removal by Adsorption: Kinetics, Thermodynamics, and Mechanism. Australian Journal of Chemistry., 68, 1305-1315. DOI: 10.1071/CH14675.10.1071/CH14675Open DOISearch in Google Scholar

Xu, D., Tan, X., Chen, C., & Wang, X. (2008). Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 154, 1-3, 407-416. DOI: 10.1016/j.jhazmat.2007.10.059.10.1016/j.jhazmat.2007.10.059Open DOISearch in Google Scholar

Yan, W., Ramos, M. A. V., Koel, B. E., &. Zhang, W. X. (2012). As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron microscopy. Journal of Physical Chemistry C, 116, 5303-5311. DOI: 10.1021/jp208600n.10.1021/jp208600nOpen DOISearch in Google Scholar

You, Y., Vance, G. F., & Zhao, H. (2001). Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Applied Clay Science, 20, 13-25. DOI: 10.1016/S0169-1317(00)00043-0.10.1016/S0169-1317(00)00043-0Open DOISearch in Google Scholar

Zachara, J. M., Cowan, C. E., Schmidt, R. L., & Ainsworth, C. C. (1988). Chromate adsorption on kaolinite. Clays and Clay Minerals, 36(4), 317-326. DOI: 10.1346/CCMN.1988.0360405.10.1346/CCMN.1988.0360405Open DOISearch in Google Scholar

Zhang, Y.-Y., Jiang, H., Zhang, Y., & Xie, J.-F. (2013). The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution. Chemical Engineering Journal, 229, 412-419. DOI: 10.1016/j.cej.2013.06.031.10.1016/j.cej.2013.06.031Open DOISearch in Google Scholar

Zhang, X., Lin, S., Chen, Z., Megharaj, M., & Naidu, R. (2010). Kaolinite supported nanoscale zero-valent iron for removal of Pb 2 from aqueous solution: Reactivity, characterization and mechanism. Water Research, 45(11), 3481-3488. DOI: 10.1016/j.watres.2011.04.010.10.1016/j.watres.2011.04.01021529878Open DOISearch in Google Scholar

Zhang, X., Lin, S., Lu, X.Q., & Chen, Z. L. (2010). Removal of Pb(II) from water using natural kaolin loaded with synthesized nanoscale zero-valent iron. The Chemical Engineering Journal 163(3), 243-248. DOI: 10.1016/j.cej.2010.07.056.10.1016/j.cej.2010.07.056Open DOISearch in Google Scholar

Zhang, S. Q., & Hou, W. G. (2008). Adsorption behavior of Pb(II) on montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 320(1-3), 92-97. DOI: 10.1016/j.colsurfa.2008.01.038.10.1016/j.colsurfa.2008.01.038Open DOISearch in Google Scholar

Zondervan, E., & Roffel, B. (2007). Evaluation of different cleaning agents used for cleaning ultra filtration membranes fouled by surface water. Journal of Membrane Science, 304, 40-49. DOI: 10.1016/j.memsci.2007.06.041.10.1016/j.memsci.2007.06.041Open DOISearch in Google Scholar

eISSN:
1899-8526
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, Geophysics, other