Cite

Atkins, M., Glasser, F. P., & Jack J. J. (1995). Zeolite P in cements: Its potential for immobilizing toxic and radioactive waste species. Waste Management, 15 (2), 127-135. DOI: 10.1016/0956-053X(95)00015-R.10.1016/0956-053X(95)00015-Open DOISearch in Google Scholar

Bandura, L., Franus, M., Józefaciuk, G., & Franus, W. (2015). Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel, 147, 100-107. DOI: 10.1016/j.fuel.2015.01.067.10.1016/j.fuel.2015.01.067Open DOISearch in Google Scholar

Bieganowski, A., Łagód, G., Ryżak, M., Montusiewicz, A., Chomczyńska, M., & Sochan, A. (2012). Measurement of activated sludge particle diameters using laser diffraction method. Ecological Chemistry and Engineering S, 19 (4), 597-608. DOI: 10.2478/v10216-011-0042-7.10.2478/v10216-011-0042-7Open DOISearch in Google Scholar

Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61, 43-56. DOI: 10.1016/S1387-1811(03)00354-8.10.1016/S1387-1811(03)00354-8Open DOISearch in Google Scholar

Chałupnik, S., Franus, W., Wysocka, M., & Gzyl, G. (2013). Application of zeolites for radium removal from mine water. Environmental Science and Pollution Research, 20, 7900-7906. DOI: 10.1007/s11356-013-1877-5.10.1007/s11356-013-1877-5Open DOISearch in Google Scholar

Charkhi, A., Kazemeini, M., Ahmadi, S. J., & Kazemian, H. (2012). Fabrication of granulated NaY zeolite nanoparticles using a new method and study the adsorption properties. Powder Technology , 231, 1-6. DOI: 10.1016/j.powtec.2012.06.041.10.1016/j.powtec.2012.06.041Open DOISearch in Google Scholar

Czurda, K. A., & Haus, R. (2002). Reactive barriers with fly ash zeolites for in situ groundwater remediation. Applied Clay Science, 21, 13-20. DOI: 10.1016/S0169-1317(01)00088-6.10.1016/S0169-1317(01)00088-6Open DOISearch in Google Scholar

De la Varga, I., Castro, J., Bentz, D., & Weiss, J. (2012). Application of internal curing for mixtures containing high volumes of fly ash. Cement and Concrete Composites, 34 (9), 1001-1008. DOI: 10.1016/j.cemconcomp.2012.06.008.10.1016/j.cemconcomp.2012.06.008Open DOISearch in Google Scholar

Ejsymont, J., Łaptaś, A., & Steciu, Z. (1975). PL80674. Sposób zabezpieczenia zeolitów przed zmianami własności w procesie formowania, Patent - PL80674, 1975. [in Polish]Search in Google Scholar

Ejsymont, J., & Witek, E. (1986). Sposób granulowania zeolitów syntetycznych, Patent - PL131352, 1986. [in Polish]Search in Google Scholar

Ejsymont, J., Witek, E., & Łaptaś, A. (1981). PL103530. Sposób otrzymywania kształtek zeolitów syntetycznych, Patent - PL 103530, 1981. [in Polish]Search in Google Scholar

Franus, W. (2012). Characterization of X-type zeolite prepared from coal fly ash. Polish Journal of Environmental Studies, 21 (2), 337-343.Search in Google Scholar

Franus, W., & Wdowin, M. (2010). Removal of ammonium ions by selected natural and synthetic zeolites. Mineral Resource Management, 26, 133-148.Search in Google Scholar

Franus, W., Wdowin, M., & Franus, M. (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment, 186, 5721-5729. DOI: 10.1007/s10661-014-3815-5.10.1007/s10661-014-3815-5411205324838802Open DOISearch in Google Scholar

Gara, P., Hryniewicz, M., & Wisła-Walsh, E. (2008). New high surface area calcareous sorbent produced in mechanical operations. Polish Journal of Environmental Studies, 17 (3A), 198-202.Search in Google Scholar

Jagielska, E. M., Berak, J., Bazarnik, A., Kazimierczuk, R., & Apczyńsk, J. (1988). PL140558. Sposób formowania zeolitów, Patent - PL140558, 1988. [in Polish]Search in Google Scholar

Kim, K-J, & Ahn, H-G. (2012). The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous and Mesoporous Materials, 152, 78-83. DOI: 10.1016/j.micromeso.2011.11.051.10.1016/j.micromeso.2011.11.051Open DOISearch in Google Scholar

Klinik, J. (2000). Tekstura porowatych ciał stałych. Kraków: Ośrodek Edukacji Niestacjonarnej Akademia Górniczo-Hutnicza. [in Polish]Search in Google Scholar

Knight, P. C. (2001). Structuring agglomerated products for improved performance. Powder Technology, 119 (1), 14-25. DOI: 10.1016/S0032-5910(01)00400-4.10.1016/S0032-5910(01)00400-4Open DOISearch in Google Scholar

Kurdowski, W. (2010). Chemia cementu i betonu, Warszawa: Wydawnictwo naukowe PWN. [in Polish]Search in Google Scholar

Lipkind, B. A., Valuiskaya, O. M., Kanakova, O. A., Nefedov, B. K. (1987). Forming of synthetic zeolites with binder additives into microbead granules. Chemistry and Technology of Fuels and Oils, 23(10), 476-478. DOI: 10.1007/BF00724830.10.1007/BF00724830Search in Google Scholar

Lippens, B. C., & de Boer, J. H. (1965). Studies on pore systems in catalysts. V. The t method. Journal of Catalysis, 4, 319-323. DOI: 10.1016/0021-9517(65)90307-6.10.1016/0021-9517(65)90307-6Open DOISearch in Google Scholar

Lippens, B. C., Linsen, B. G., & de Boer, J. H. (1964). Studies on pore systems in catalysts I. The adsorption of nitrogen; apparatus and calculation. Journal of Catalysis, 3, 32-37. DOI: 10.1016/0021-9517(64)90089-2.10.1016/0021-9517(64)90089-2Open DOISearch in Google Scholar

Majchrzak-Kucęba, I. (2011). Mikroporowate i mezoporowate materiały z popiołów lotnych. Monografie Politechniki Częstochowskiej, 201, (pp. 1-208). Częstochowa : Wydaw. Politechniki Częstochowskiej. [in Polish]Search in Google Scholar

Manikandan, R., & Ramamurthy, K. (2007). Influence of fineness of fly ash on the aggregate pelletization process. Cement and Concrete Composites, 29(6), 456-464. DOI: 10.1016/j.cemconcomp.2007.01.002.10.1016/j.cemconcomp.2007.01.002Open DOISearch in Google Scholar

Matsi, T., & Keramidas, V. Z. (1999). Fly ash application on two acid soils and its effect on soil salinity, pH, B, P and on ryegrass growth and composition. Environmental Pollution, 104, 107-112. DOI: 10.1016/S0269- 7491(98)00145-6.10.1016/S0269-7491(98)00145-6Open DOISearch in Google Scholar

Mehra, A., Farago, M. E., & Banerjee, D. K. (1998). Impact of fly ash from coal-fired power stations in Delhi, with particular reference to metal contamination. Environmental Monitoring and Assessment, 50(1), 15-35. DOI: 10.1023/A:1005860015123.10.1023/A:1005860015123Open DOISearch in Google Scholar

Merrikhpour, H., & Jalali, M. (2012). Comparative and competitive adsorption of cadmium,copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy, 15, 303-316. DOI: 10.1007/s10098-012-0522-1.10.1007/s10098-012-0522-1Open DOISearch in Google Scholar

Misaelides, P. (2011). Application of natural zeolites in environmental remediation: a short review. Microporous and Mesoporous Materials, 144, 15-18. DOI: 10.1016/j.micromeso.2011.03.024.10.1016/j.micromeso.2011.03.024Open DOISearch in Google Scholar

Morency, J. R., Panagiotou, T., & Senior, C. L. (2002). Zeolite sorbent that effectively removes mercury from flue gases. Filtration & Separation, 39(7), 24-26. DOI: 10.1016/S0015-1882(02)80207-5.10.1016/S0015-1882(02)80207-5Open DOISearch in Google Scholar

Northcott, K. A., Bacus, J., Taya, N., Komatsu, Y., Perera, J. M., & Stevens, G. W. (2010). Synthesis and characterization of hydrophobic zeolite for the treatment of hydrocarbon contaminated ground water. Journal of Hazardous Materials183, 434-40. DOI: 10.1016/j.jhazmat.2010.07.043.10.1016/j.jhazmat.2010.07.043Open DOISearch in Google Scholar

Panek, R., Wisła-Walsh, E., Gara, P., & Wdowin, M. (2016).The zeolite-carbon composite as CO2 sorbent. Proceedings - 18th International Zeolite Conference - Zeolites for a Sustainable World, 19 June - 24 June 2016. Rio de Janeiro, Brazil.Search in Google Scholar

Perego, C., Bagatin, R., Tagliabue, M., & Vignola, R. (2013). Zeolites and related mesoporous materials for multitalented environmental solutions. Microporous and Mesoporous Materials, 166, 37-49. DOI: 10.1016/j.micromeso.2012.04.048.10.1016/j.micromeso.2012.04.048Open DOISearch in Google Scholar

Pietsch, W. (2004). Agglomeration in Industry: Occurence and Applications (1 Ed). Weinheim: Wiley-VCH.10.1002/9783527619795Search in Google Scholar

Remenárová, L., Pipíška, M., Florková, E., Augustín, J., Rozložník, M., Hostin, S., & Horník M. (2014). Radiocesium adsorption by zeolitic materials synthesized from coal fly ash. Nova Biotechnologica et Chimica, 13(1), 57-72. DOI: 10.2478/nbec-2014-0007.10.2478/nbec-2014-0007Open DOISearch in Google Scholar

Sarbak, Z. (2002). Surface centres for CO adsorption on supported platinum. Adsorption Science & Technology, 20, 347-351. DOI: abs/10.1260/02636170260295533.10.1260/02636170260295533Open DOISearch in Google Scholar

Scrivener, K. L., & Nonat, A. (2011). Hydration of cementitious materials, present and future. Cement and Concrete Research41(7), 651-665. DOI: 10.1016/j.cemconres.2011.03.026.10.1016/j.cemconres.2011.03.026Open DOISearch in Google Scholar

Simpson, J. A., & Bowman, R. S. (2009). Nonequilibrium sorption and transport of volatile petroleum hydrocarbons in surfactant-modified zeolite. Journal of Contaminant Hydrology, 108, 1-11. DOI: 10.1016/j.jconhyd.2009.05.001.10.1016/j.jconhyd.2009.05.001Open DOISearch in Google Scholar

Singh, N. B., Rai, S., & Chaturvedi, S. (2002). Hydration of Composite Cement. Progress in Crystal Growth and Characterization of Materials, 45, 171-174. DOI: 10.1016/S0960-8974(02)00045-1.10.1016/S0960-8974(02)00045-1Open DOISearch in Google Scholar

Sochon, R. P. J., & Salman, A. D. (2010). Particle growth and agglomeration processes. In R. Pohorecki (Eds.), Chemical Engineering and chemical process technology (vol.2) (pp.299-317). Singapore: Eolss Publishers Co. UK.Search in Google Scholar

Srb J., & Ruzickova Z. (1988). Pelletization of Fines (Minerals, Ores, Coal) In D.W. Fuerstenau, Advisory Editor, Developments in Mineral Processing Vol 7 (pp. 292-296). Elsevier Science Publishers B.V., Amsterdam, The NetherlandsSearch in Google Scholar

Sumer, M. (2012). Compressive strength and sulfate resistance properties of concretes containing Class F and Class C fly ashes. Construction and Building Materials, 34, 531-536. DOI: 10.1016/j.conbuildmat.2012.02.023.10.1016/j.conbuildmat.2012.02.023Open DOISearch in Google Scholar

Swanepoel, J. C., & Strydom, C. A. (2002). Utilisation of fly ash in a geopolymeric material. Applied Geochemistry17, 1143-1148. DOI: 10.1016/S0883-2927(02)00005-7.10.1016/S0883-2927(02)00005-7Open DOISearch in Google Scholar

Szala, B., Bajda, T., Matusik, J., Zięba, K., & Kijak, B. (2015). BTX sorption on Na-P1 organozeolite as a process controlled by the amount of adsorbed HDTMA. Microporous and Mesoporous Materials, 202, 115-123. DOI 10.1016/j.micromeso.2014.09.033.10.1016/j.micromeso.2014.09.033Open DOISearch in Google Scholar

Tharnzil L. (1997). Immobilization of 137Cs on cement-zeolite composites. Waste Treatment and Immobilization Technologies Involving Inorganic Sorbents. Final report IAEA-TECDOC-947. Vienna, Austria: International Atomic Energy Agency, Vienna, 153-162.Search in Google Scholar

Ugal, J. R., Mustafa, M., & Abdulhadi, A. A. (2008). Preparation of zeolite type 13x from locally available raw materials. Iraqi Journal of Chemical and Petroleum Engineering, 9(1), 51-56.10.31699/IJCPE.2008.1.8Search in Google Scholar

Vignola, R., Bagatin, R., De Folly D’Auris, A., Flego, C., Nalli, M., Ghisletti, D. (2011). Zeolites in a permeable reactive barrier (PRB): one year of field experience in a refinery groundwater-Part 1: The performances. Chemical Engineering Journal178, 204-209. DOI: 10.1016/j.cej.2011.10.050.10.1016/j.cej.2011.10.050Open DOISearch in Google Scholar

Wajszel, D. (1982). PL113134. Sposób formowania granule zeolitowych zwłaszcza o wymiarze ziaren 0,6 - 1,0 mm, Patent - PL113134 1982. [in Polish]Search in Google Scholar

Wdowin, M., Franus, M., Panek, R., Bandura, L., & Franus, W. (2014). The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy, 16, 1217-1223. DOI: 10.1007/s10098-014-0719-6.10.1007/s10098-014-0719-6Open DOISearch in Google Scholar

Wdowin, M., Franus, W., & Panek, R. (2012). Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresenius Environmental Bulletin, 21(12), 3726-3734Search in Google Scholar

Wdowin, M., Wiatros-Motyka, M., Panek, R., Stevens, Lee A., Wojciech, F., & Snape, C. E. (2014). Experimental study of mercury removal from exhaust gases. Fuel, 128, 451-457. DOI: 10.1016/j.fuel.2014.03.041.10.1016/j.fuel.2014.03.041Open DOISearch in Google Scholar

Wdowin, W., Macherzyński, M., Panek, R., Górecki, J., & Franus, W. (2015). Investigation of the mercury vapour sorption from exhaust gas by an Ag-X zeolite. Clay Minerals, 50(1), 31-40. DOI: 10.1180/claymin.2015.050.1.04.10.1180/claymin.2015.050.1.04Open DOISearch in Google Scholar

Wisła-Walsh, E., Mięso, R., & Sikora, W.S. (1999). Research into fly ash agglomeration process and physicochemical properties of pellets. Mineralogia Special Papers, 13, (pp.100-120). Kraków: Mineralogical Society of Poland.Search in Google Scholar

Yang, R., Liao, W-P., & Wu, P-H. (2012). Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan. Journal of Environmental Management 104, 67-76. DOI: 10.1016/j.jenvman.2012.03.008.10.1016/j.jenvman.2012.03.008Open DOISearch in Google Scholar

Yoo, J. G., & Jo, Y. M. (2003). Finding the optimum binder for fly ash pelletization. Fuel Processing Technology 81(3), 173-186. DOI: 10.1016/S0378-3820(03)00011-0.10.1016/S0378-3820(03)00011-0Open DOISearch in Google Scholar

Zhang, M., Zhang, H., Xu, D., Han, L., Niu, D., & Tian, B. (2011). Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination, 271, 111-121. DOI: 10.1016/j.desal.2010.12.021.10.1016/j.desal.2010.12.021Open DOISearch in Google Scholar

eISSN:
1899-8526
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, Geophysics, other