Open Access

A universal meteorological method to identify potential risk of wind erosion on heavy-textured soils


Cite

AMÉZKETA, E., ARAGÜÉS, R., CARRANZA, R., URGEL, B. (2003): Macro- and micro-aggregate stability of soils determined by a combination of wet-sieving and laser-ray diffraction. Spanish Journal of Agricultural Research, 1: 83–94.10.5424/sjar/2003014-50Search in Google Scholar

ANDERSON, C. H., WENHARDT, A. (1966): Soil erodibility, fall and spring. Canadian Journal of Soil Science, 46(3): 255–259.10.4141/cjss66-040Search in Google Scholar

BECHMANN, M. E., KLEINMAN, P. J., SHARPLEY, A. N., SAPORITO, L. S. (2005): Freeze–thaw effects on phosphorus loss in runoff from manured and catch-cropped soils. Journal of Environmental Quality, 34(6): 2301–2309.10.2134/jeq2004.041516275731Search in Google Scholar

BENOIT, G. R. (1973): Effect of freeze-thaw cycles on aggregate stability and hydraulic conductivity of three soil aggregate sizes. Soil Science Society of America Proceedings, 37(1): 3–5.10.2136/sssaj1973.03615995003700010007xSearch in Google Scholar

BIELEK, P., ČURLÍK, J., FULAJTÁR, E., HOUŠKOVÁ, B., ILAVSKÁ, B., KOBZA, J. (2005): Soil survey and managing of soil data in Slovakia. In: Soil resources of Europe, second edition. Research report No. 9 (pp. 317–329). The European Soil Bureau, Ispra, Italy.Search in Google Scholar

BORELLI, P., BALLABIO, C., PANAGOS, P., MONTANARELLA, L. (2014): Wind erosion susceptibility of European soils. Geoderma, 232–234: 471–478.10.1016/j.geoderma.2014.06.008Search in Google Scholar

BORŮVKA, L., VALLA, M., DONÁTOVÁ, H., NĚMEČEK, K. (2002): Vulnerability of soil aggregates in relation to soil properties. Rostlinná Výroba, 48(8): 329–334.10.17221/4376-PSESearch in Google Scholar

BRAVO-GARZA, M. R., BRYAN, R. B., VORONEY, P. (2009): Influence of wetting and drying cycles and maize residue addition on the formation of water stable aggregates in Vertisols. Geoderma, 151(3–4): 150–156.10.1016/j.geoderma.2009.03.022Search in Google Scholar

BULLOCK, M. S., LARNEY, F. J., IZAURRALDE, R. C., FENG, Y. (2001): Overwinter changes in wind erodibility of clay loam soils in southern Alberta. Soil Science Society of America Journal, 65(2): 423–430.10.2136/sssaj2001.652423xSearch in Google Scholar

BULLOCK, M. S., LARNEY, F. J., McGINN, S. M., IZAURRALDE, R. C. (1999): Freeze-drying processes and wind erodibility of a clay loam soil in southern Alberta. Canadian Journal of Soil Science, 79(1): 127–135.10.4141/S98-027Search in Google Scholar

CHEPIL, W. S. (1951): Properties of soil which influence wind erosion: V. Mechanical stability of structure. Soil Science, Vol. 72: 465–478.10.1097/00010694-195112000-00007Search in Google Scholar

CHEPIL, W. S. (1952): Improved rotary sieve for measuring state and stability of dry soil structure. Soil Science Society of America Proceedings, 16(2): 113–117.10.2136/sssaj1952.03615995001600020001xSearch in Google Scholar

CHEPIL, W. S. (1953): Factors that influence clod structure and erodibility of soil by wind: I. Soil structure. Soil Science, 75: 473–483.10.1097/00010694-195306000-00008Search in Google Scholar

CHEPIL, W. S. (1954): Seasonal fluctuations in soil structure and erodibility of soil by wind. Soil Science Society of America Proceedings, 18(1): 13–16.10.2136/sssaj1954.03615995001800010004xSearch in Google Scholar

CHEPIL, W. S. (1958): Soil conditions that influence wind erosion. Technical Bulletin, No. 1185. Washington, D.C., USA, United States Department of Agriculture.Search in Google Scholar

COLAZO, J. C., BUSCHIAZZO, D. E. (2010): Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma, 159(1–2): 228 236.10.1016/j.geoderma.2010.07.016Search in Google Scholar

DAGESSE, D. F. (2013): Freezing cycle effects on water stability of soil aggregates. Canadian Journal of Soil Science, 93(4):473–483.10.4141/cjss2012-046Search in Google Scholar

DeLUCA, T. H., KEENEY, D. R., McCARTY, G. W. (1992): Effect of freeze-thaw events on mineralization of soil nitrogen. Biology and Fertility of Soils, 14(2): 116–120.10.1007/BF00336260Search in Google Scholar

DIAZ-ZORITA, M., GROVE, J. H., PERFECT, E. (2002): Aggregation, fragmentation, and structural stability measurement. In: Encyclopedia of Soil Science (pp. 37–40). Marcel Dekker, Inc., New York, USA.Search in Google Scholar

EDWARDS, L. M. (2013): The effects of soil freeze–thaw on soil aggregate breakdown and concomitant sediment flow in Prince Edward Island: A review. Canadian Journal of Soil Science, 93(4): 459–472.10.4141/cjss2012-059Search in Google Scholar

FAN, Y., LIU, J., CAI, Q. (2008): The effects of wetting rate on aggregate stability in three soils. In: 15th ISCO Congress “Soil and Water Conservation, Climate Change and Environmental Sensitivity”, 18–23 May 2008 Budapest (p. 4). Geographical Research Institute, Hungarian Academy of Science, Budapest, Hungary.Search in Google Scholar

GROGAN, P., MICHELSEN, A., AMBUS, P., JONASSON, S. (2004): Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biology and Biochemistry, 36: 641–654.10.1016/j.soilbio.2003.12.007Search in Google Scholar

HACHEM, S., DUGUAY, C. R., ALLARD, M. (2012): Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. The Cryosphere, 6: 51–69.10.5194/tc-6-51-2012Search in Google Scholar

HAGEN, L. J., SKIDMORE, E. L., LAYTON, J. B. (1988): Wind erosion abrasion: effects of aggregate moisture. Transactions of the ASAE, 31(3): 725–728.10.13031/2013.30774Search in Google Scholar

HARTMANN, R., DE BOODT, M. (1974): The influence of the moisture content, texture and organic matter on the aggregation of sandy and loamy soils. Geoderma, 11(1): 53–62.10.1016/0016-7061(74)90006-8Search in Google Scholar

HERSHFIELD, D. M. (1974): The frequency of freeze-thaw cycles. Journal of Applied Meteorology, 13: 348–354.10.1175/1520-0450(1974)013<0348:TFOFTC>2.0.CO;2Search in Google Scholar

HINMAN, W. C., BISAL, F. (1968): Alterations of soil structure upon freezing and thawing and subsequent drying. Canadian Journal of Soil Science, 48(2): 193–197.10.4141/cjss68-023Search in Google Scholar

IUSS Working Group WRB (2006): World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome, Italy.Search in Google Scholar

KEMPER, W. D., ROSENAU, R. C. (1986): Aggregate stability and size distribution. In: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (pp. 425–444). American Society of Agronomy, Madison, USA.10.2136/sssabookser5.1.2ed.c17Search in Google Scholar

KONG, B., YU, H. (2013): Estimation model of soil freeze-thaw erosion in Silingco Watershed Wetland of Northern Tibet. The Scientific World Journal, ID 636521.10.1155/2013/636521Search in Google Scholar

KVÆRNØ, S. H., ØYGARDEN, L. (2006): The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena, 67(3): 175–182.10.1016/j.catena.2006.03.011Search in Google Scholar

LEHRSCH, G. A. (1998): Freeze/thaw cycles increase near-surface aggregate stability. Soil Science, 163(1): 63–70.10.1097/00010694-199801000-00009Search in Google Scholar

LEHRSCH, G. A., SOJKA, R. E., CARTER, D. L., JOLLEY, P. M. (1991): Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Science Society of America Journal, 55(5): 1401–1406.10.2136/sssaj1991.03615995005500050033xSearch in Google Scholar

LOGSDAIL, D. E., WEBBER, L. R. (1959): Effect of frost action on structure of Haldimand clay. Canadian Journal of Soil Science, 39(2): 103–106.10.4141/cjss59-014Search in Google Scholar

MELICK, D. R., SEPPELT, R. D. (1992): Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarctic Science, 4(4): 399–404.10.1017/S0954102092000592Search in Google Scholar

MURRAY, R. S., GRANT, C. D. (2007): The impact of irrigation on soil structure. The National Program for Sustainable Irrigation (Land and Water Australia), Canberra, Australia.Search in Google Scholar

MUŽÍKOVÁ, B., STŘEDA, T., PODHRÁZSKÁ, J., TOMAN, F. (2010): Meteorological conditions during extreme wind erosion events on heavy soils. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 58(1): 115–122.Search in Google Scholar

MUŽÍKOVÁ, B., STŘEDA, T., STŘEDOVÁ, H. (2013): State of bare soil surface as a spring drought indicator. Contributions to Geophysics and Geodesy, 43(3): 197–207.10.2478/congeo-2013-0012Search in Google Scholar

NIMMO, J. R. (2005): Aggregation: Physical Aspects. In: Encyclopedia of Soils in the Environment (pp. 28–35). London, Academic Press.10.1016/B0-12-348530-4/00532-4Search in Google Scholar

OZTAS, T., FAYETORBAY, F. (2003): Effect of freezing and thawing processes on soil aggregate stability. Catena, 52(1): 1–8.10.1016/S0341-8162(02)00177-7Search in Google Scholar

PODHRÁZSKÁ, J., KUČERA, J., CHUCHMA, F., STŘEDA, T., STŘEDOVÁ, H. (2013): Effect of changes in some climatic factors on wind erosion risks – the case study of South Moravia. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(6): 1829–1837.10.11118/actaun201361061829Search in Google Scholar

POKLADNÍKOVÁ, H., TOMAN, F., STŘEDA, T. (2008): Negative impacts of snowmelting on the soil. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 56(1):143–148.Search in Google Scholar

SINGER, M. J., SHAINBERG, I. (2004): Mineral soil surface crusts and wind and water erosion. Earth Surface Processes and Landforms, 29(9): 1065–1075.10.1002/esp.1102Search in Google Scholar

SJURSEN, H., MICHELSEN, A., HOLMSTRUP, M. (2005): Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Applied Soil Ecology, 28(1): 79–93.10.1016/j.apsoil.2004.06.003Search in Google Scholar

SKIDMORE, E. L., POWERS, D. H. (1982): Dry soil-aggregate stability: energy-based index. Soil Science Society of America Journal, 46: 1274–1279.10.2136/sssaj1982.03615995004600060031xSearch in Google Scholar

SLABÁ, N. (1972): Návod pro pozorovatele meteorologických stanic ČSSR. 2. přepracované vydání. Sborníky předpisů Hydrometeorologického ústavu v Praze, Svazek 7. Praha: Hydrometeorologický ústav.Search in Google Scholar

SPÁČILOVÁ, B., STŘEDA, T., THONNOVÁ, P. (2014): Spatial expression of potential wind erosion threats to arable soils in the Czech Republic. Contributions to Geophysics and Geodesy, 44(3): 241–252.10.1515/congeo-2015-0004Search in Google Scholar

STŘEDOVÁ, H., CHUCHMA, F., STŘEDA, T. (2011): Climatic factors of soil estimated system. Bioclimate: Source and limit of social development (pp. 137–138). Topolčianky, Slovakia.Search in Google Scholar

ŠVEHLÍK, R. (1985): Větrná eroze půdy na jihovýchodní Moravě. Zabraňujeme škodám. Praha, SZN.Search in Google Scholar

TATARKO, J., WAGNER, L. E., BOYCE, C. A. (2001): Effects of overwinter processes on stability of dry soil aggregates. In: Soil Erosion Research for the 21st Century (pp. 459–462). Honolulu, ASABE.Search in Google Scholar

VOPRAVIL, J. [ed.] (2011): Půda a její hodnocení v ČR, díl II. Praha, VÚMOP, v.v.i.Search in Google Scholar

VOPRAVIL, J., JANEČEK, M., TIPPL, M. (2007): Revised soil erodibility K-factor for soils in the Czech Republic. Soil and Water Research, 2(1): 1–9.10.17221/2100-SWRSearch in Google Scholar

WANG, E., CRUSE, R. M., CHEN, X., DAIGH, A. (2012): Effects of moisture condition and freeze/thaw cycles on surface soil aggregate size distribution and stability. Canadian Journal of Soil Science, 92(3): 529–536.10.4141/cjss2010-044Search in Google Scholar

WMO (2008): Guide to meteorological instruments and methods of observation. WMO, No. 8. World Meteorological Organization, Geneva.Search in Google Scholar

XIUQING, Z., FLERCHINGER, G. (2001): Infiltration into freezing and thawing soils under differing field treatments. Journal of Irrigation and Drainage Engineering, 127(3): 176–182.10.1061/(ASCE)0733-9437(2001)127:3(176)Search in Google Scholar

YODER, R. E. (1936): A direct method of aggregate analysis and a study of the physical nature of erosion losses. Journal of the American Society of Agronomy, 28: 337–351.10.2134/agronj1936.00021962002800050001xSearch in Google Scholar

ZHOU, Y., GUO, B., WANG, S., TAO, H. (2015): An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing. Journal of Arid Land, 7(3): 304–317.10.1007/s40333-015-0122-0Search in Google Scholar

eISSN:
1210-8812
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Business and Economics, Business Management, Industries, Environmental Management, Geosciences, Geography