Open Access

The Morpho-Functional Parameters of Rat Pituitary Hormone Producing Cells After Genistein Treatment


Cite

1. Patisaul, H.B., Jefferson, W. (2010). The pros and cons of phytoestrogens. Front Neuroendocrinol. 31, 400-419. https://doi.org/10.1016/j.yfrne.2010.03.003 PMid:20347861 PMCid:PMC307442810.1016/j.yfrne.2010.03.003PMid:20347861PMCid:PMC3074428Open DOISearch in Google Scholar

2. Setchell, K.D., Borriello, S.P., Hulme, P., Kirk, D.N., Axelson, M. (1984). Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr. 40, 569-578. PMid:638300810.1093/ajcn/40.3.569Open DOISearch in Google Scholar

3. Wet, L., Birac, P.M., Pratt, D.E. (1978). Separation of the isomeric isoflavones from soybeans by highperformance liquid chromatography. J Chromatogr. 150, 266–268. https://doi.org/10.1016/S0021-9673(01)92130-210.1016/S0021-9673(01)92130-2Open DOISearch in Google Scholar

4. Cheng, E., Story, C.D., Yoder, L., Hale, W.H., Burrough, W. (1953). Estrogenic activity of isoflavone derivatives extracted and prepared from soybean oil meal. Science 118, 164–165. https://doi.org/10.1126/science.118.3058.164 PMid:1307623110.1126/science.118.3058.164PMid:13076231Open DOISearch in Google Scholar

5. Batterham, T.J., Hart, N.K., Lamberton, J.A. (1965). Metabolism of oestrogenic isoflavones in sheep. Nature 4983, 509. https://doi.org/10.1038/206509a010.1038/206509a0Open DOISearch in Google Scholar

6. Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., van der Saag, P.T., van der Burg, B., Gustafsson, J.A. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139, 4252-4263. https://doi.org/10.1210/endo.139.10.6216 PMid:975150710.1210/endo.139.10.6216PMid:9751507Open DOISearch in Google Scholar

7. Lephart, E.D., West, T.W., Weber, K.S., Rhees, R.W., Setchell, K.D., Adlercreutz, H., Lund, T.D. (2002). Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicol Teratol. 24, 5-16. https://doi.org/10.1016/S0892-0362(01)00197-010.1016/S0892-0362(01)00197-0Open DOISearch in Google Scholar

8. Kostelac, D., Rechkemmer, G., Briviba, K. (2003). Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem. 51, 7632-7635. https://doi.org/10.1021/jf034427b PMid:1466452010.1021/jf034427bSearch in Google Scholar

9. Patisaul, H.B. (2005). Phytoestrogen action in the adult and developing brain. J Neuroendocrinol. 17, 57-64. https://doi.org/10.1111/j.1365-2826.2005.01268.x PMid:1572047610.1111/j.1365-2826.2005.01268.xPMid:15720476Open DOISearch in Google Scholar

10. Setchell, K.D., Cassidy, A. (1999). Dietary isoflavones: biological effects and relevance to human health. J Nutr. 129, 758-767.10.1093/jn/129.3.758SSearch in Google Scholar

11. Adlercreutz, H., Mazur, W. (1997). Phyto-oestrogens and Western diseases. Ann Med. 29, 95-120. https://doi.org/10.3109/07853899709113696 PMid:918722510.3109/07853899709113696PMid:9187225Open DOISearch in Google Scholar

12. Shemesh, M., Lindner, H. R., Ayalaoan, N. (1972). Affinity of rabbit uterine oestradiol receptor for phyto-oestrogens and its use in a competitive protein-binding radioassay for plasma coumestrol. J Reprod Fertil. 29, 1–9. https://doi.org/10.1530/jrf.0.0290001 PMid:501701110.1530/jrf.0.0290001PMid:5017011Open DOISearch in Google Scholar

13. Piontek, M., Hangels, K.J., Porschen, R., Strohmeyer, G. (1993). Anti-proliferative effect of tyrosine kinase inhibitors in epidermal growth factor stimulated growth of human gastric cancer cells. Anticancer Res. 13, 2119–2123. PMid:8297123Search in Google Scholar

14. Boutin, J.A. (1994). Tyrosine protein kinase inhibition and cancer. Int J Biochem Cell Bio. 26, 1203–1226. https://doi.org/10.1016/0020-711X(94)90091-410.1016/0020-711X(94)90091-4Open DOISearch in Google Scholar

15. Kurzer, M.S., Xia, X. (1997). Dietary Phytoestrogens Annu Rev Nutr. 17, 353–381. https://doi.org/10.1146/annurev.nutr.17.1.353 PMid:924093210.1146/annurev.nutr.17.1.353PMid:9240932Open DOISearch in Google Scholar

16. Okura, A., Arakawa, H., Oka, H., Yoshinari, T., Monden, Y. (1988). Effect of genistein on topoisomerase activity and on the growth of [Val 12] Ha-ras-transformed NIH 3T3 cells. Biochem Biophys Res Commun. 157, 183–189. https://doi.org/10.1016/S0006-291X(88)80030-510.1016/S0006-291X(88)80030-5Open DOISearch in Google Scholar

17. Hu, G., X, Zhao, B.H., Chu, Y.H., Zhou, H.Y., Akingbemi, B.T., Zheng, Z.Q, Ge, R.S. (2010). Effects of genistein and equol on human and rat testicular 3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase 3 activities. Asian J Androl. 12(4): 519-526. https://doi.org/10.1038/aja.2010.18 PMid:20453869 PMCid:PMC373936210.1038/aja.2010.18PMid:20453869PMCid:PMC3739362Open DOISearch in Google Scholar

18. Adlercreutz, H. (1990). Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest Suppl. 201, 3-23. https://doi.org/10.1080/00365519009085798 PMid:217385610.1080/00365519009085798PMid:2173856Open DOISearch in Google Scholar

19. Wang, H., Li, J., Gao, Y., Xu, Y., Pan, Y., Tsuji, I., Sun, Z.J., Li, X.M. (2010). Xeno-oestrogens and phyto-oestrogens are alternative ligands for the androgen receptor. Asian J Androl. 12, 535-547. https://doi.org/10.1038/aja.2010.14 PMid:20436506 PMCid:PMC373936010.1038/aja.2010.14PMid:20436506PMCid:PMC3739360Open DOISearch in Google Scholar

20. Lee, H.P., Gourley, L., Duffy, S.W., Estève, J., Lee, J., Day, N.E. (1991). Dietary effects on breast-cancer risk in Singapore. Lancet 337, 1197–1200. https://doi.org/10.1016/0140-6736(91)92867-210.1016/0140-6736(91)92867-2Open DOISearch in Google Scholar

21. Adlercreutz, H., Honjo, H., Higashi, A., Fotsis, T., Hämäläinen, E., Hasegawa, T., Okada, H. (1991). Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. Am J Clin Nutr. 54, 1093–1100. PMid:165978010.1093/ajcn/54.6.1093Search in Google Scholar

22. Ingram, D., Sanders, K., Kolybaba, M., Lopez, D. (1997). Case-control study of phyto-oestrogens and breast cancer. Lancet 350, 990-994. https://doi.org/10.1016/S0140-6736(97)01339-110.1016/S0140-6736(97)01339-1Open DOISearch in Google Scholar

23. Shimizu, H., Ross, R.K., Bernstein, L., Yatani, R., Henderson, B.E., Mack, T.M. (1991). Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer. 63, 963-966. https://doi.org/10.1038/bjc.1991.210 PMid:2069852 PMCid:PMC197254810.1038/bjc.1991.210PMid:2069852PMCid:PMC1972548Open DOISearch in Google Scholar

24. Watanabe, S., Koessel, S (1993). Colon cancer: an approach from molecular epidemiology. J Epidemiol. 3, 47-61. https://doi.org/10.2188/jea.3.4710.2188/jea.3.47Open DOISearch in Google Scholar

25. Severson, R.K., Nomura, A.M., Grove, J.S., Stemmermann, G.N. (1989). A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii. Cancer Res. 49, 1857-1860. PMid:2924323Search in Google Scholar

26. Anthony, M.S., Clarkson, T.B., Hughes, C.L.Jr., Morgan, T.M., Burke, G.L. (1996). Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J Nutr. 126, 43-50. PMid:855832410.1093/jn/126.1.43Search in Google Scholar

27. Tikkanen, M.J., Wahala, K., Ojala, S., Vihma, V., Adlercreutz, H. (1998). Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Natl Acad Sci USA 95, 3106-3110. https://doi.org/10.1073/pnas.95.6.3106 PMid:9501223 PMCid:PMC1970210.1073/pnas.95.6.3106PMid:9501223PMCid:PMC19702Open DOISearch in Google Scholar

28. Raines, E.W., Ross, R. (1995). Biology of atherosclerotic plaque formation: possible role of growth factors in lesion development and the potential impact of soy. J Nutr. 125, 624-630.Search in Google Scholar

29. Šošić-Jurjević, B., Filipović, B., Ajdžanović, V., Brkić, D., Ristić, N., Stojanoski, M.M., Nestorović, N., Trifunović, S., Sekulić. M (2007). Subcutaneously administrated genistein and daidzein decrease serum cholesterol and increase triglyceride levels in male middle-aged rats. Exp Biol Med. 232, 1222-1227. https://doi.org/10.3181/0703-BC-82 PMid:1789553010.3181/0703-BC-82PMid:17895530Open DOISearch in Google Scholar

30. Filipović, B., Šošić-Jurjević, B., Ajdžanović, V., Brkić, D., Manojlović-Stojanoski, M., Milošević, V., Sekulić, M. (2010). Daidzein administration positively affects thyroid C cells and bone structure in orchidectomized middle-aged rats. Osteoporos Int. 21, 1609-1616. https://doi.org/10.1007/s00198-009-1092-x PMid:1985964010.1007/s00198-009-1092-xPMid:19859640Open DOISearch in Google Scholar

31. Messina, M., Ho, S., Alekel, D.L. (2004) Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data. Curr Opin Clin Nutr Metab Care. 7(6): 649-658. https://doi.org/10.1097/00075197-200411000-0001010.1097/00075197-200411000-00010Open DOISearch in Google Scholar

32. Dalais, F.S., Rice, G.E., Wahlqvist, M.L., Grehan, M., Murkies, A.L., Medley, G., Ayton, R., Strauss, B.J. (1998). Effects of dietary phytoestrogens in postmenopausal women. Climacteric 1, 124-129. https://doi.org/10.3109/13697139809085527 PMid:1190791510.3109/13697139809085527PMid:11907915Open DOISearch in Google Scholar

33. Miao Q., Li J., Miao S., Hu N., Zhang J., Zhang S., Xie Y., Wang J., Wang S. (2012). The bone-protective effect of genistein in the animal model of bilateral ovariectomy: Roles of phytoestrogens and PTH/PTHR1 against post-menopausal osteoporosis. Int J Mol Sci. 13(1): 56–70. PMid:22312238Search in Google Scholar

34. Adlercreutz, C.H., Goldin, B.R., Gorbach, S.L., Hockerstedt, K.A., Watanabe, S., Hamalainen, E.K., Markkanen, M.H., Makela, T.H., Wahala, K.T., Adlercreutz, T. (1995). Soybean phytoestrogen intake and cancer risk. J Nutr. 125, 757-770.Search in Google Scholar

35. Ajdžanović, V., Šosić-Jurjević, B., Filipović, B., Trifunović, S., Manojlović-Stojanoski, M., Sekulić, M., Milosević, V. (2009). Genistein-induced histomorphometric and hormone secreting changes in the adrenal cortex in middle-aged rats. Exp Biol Med (Maywood). 234, 148-156. https://doi.org/10.3181/0807-RM-231 PMid:1906494210.3181/0807-RM-231PMid:19064942Open DOISearch in Google Scholar

36. Banerje, S., Li, Y., Wang, Z., Sarkar, F.H. (2008) Multi-target therapy of cancer by genistein Cancer Lett. 269(2): 226–242. https://doi.org/10.1016/j.canlet.2008.03.052 PMid:18492603 PMCid:PMC257569110.1016/j.canlet.2008.03.052PMid:18492603PMCid:PMC2575691Open DOISearch in Google Scholar

37. Jefferson, W.N., Couse, J.F., Padilla-Banks, E., Korach, K.S., Newbold, R.R. (2002). Neonatal exposure to genistein induces estrogen receptor (ER) alpha expression and multioocyte follicles in the maturing mouse ovary: evidence for ER betamediated and nonestrogenic actions. Biol Reprod. 67, 1285-1296. https://doi.org/10.1095/biolreprod67.4.1285 PMid:1229754710.1095/biolreprod67.4.1285PMid:12297547Open DOISearch in Google Scholar

38. Jefferson, W.N., Padilla-Banks, E., Newbold, R.R. (2007). Disruption of the developing female reproductive system by phytoestrogens: genistein as an example. Mol Nutr Food Res. 51, 832-844. https://doi.org/10.1002/mnfr.200600258 PMid:1760438710.1002/mnfr.200600258PMid:17604387Open DOISearch in Google Scholar

39. Medigović, I.M., Živanović, J.B., Ajdžanović, V.Z., Nikolić-Kokić, A.L., Stanković, S.D., Trifunović, S.L., Milošević, V.Lj., Nestorović, N.M. (2015). Effects of soy phytoestrogens on pituitary-ovarian function in middle-aged female rats. Endocrine 50, 764-776. https://doi.org/10.1007/s12020-015-0691-x PMid:2621527710.1007/s12020-015-0691-xPMid:26215277Open DOISearch in Google Scholar

40. Lindner, H.R. (1976). Occurrence of anabolic agents in plants and their importance. Environ Qual Safety Suppl. pp. 151–158.Search in Google Scholar

41. Allred, C.D., Allred, K.F., Ju, Y.H., Virant, S.M., Helferich, W.G. (2001). Soy diets containing varying amounts of genistein stimulate growth of estrogendependent (MCF-7) tumors in a dose-dependent manner. Cancer Res. 61, 5045-5050. PMid:11431339Search in Google Scholar

42. Ju, Y.H., Allred, C.D., Allred, K.F., Karko, K.L., Doerge, D.R., Helferich, W.G. (2001). Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent hum and breast cancer (MCF-7) tumors implanted in athymic nude mice. J Nutr. 131, 2957-2962. PMid:1169462510.1093/jn/131.11.2957Search in Google Scholar

43. Unfer, V., Casini, M.L., Costabile, L., Mignosa, M., Gerli, S., Di Renzo, G.C. (2004). Endometrial effects of long-term treatment with phytoestrogens: a randomized, double-blind, placebo-controlled study. Fertil Steril. 82, 145-148. https://doi.org/10.1016/j.fertnstert.2003.11.041 PMid:1523700310.1016/j.fertnstert.2003.11.041PMid:15237003Open DOISearch in Google Scholar

44. Nohynek, G.J., Borgert, C.J., Dietrich, D., Rozman, K.K. (2013). Endocrine disruption: fact or urban legend? Toxicol Lett. 223, 295-305. https://doi.org/10.1016/j.toxlet.2013.10.022 PMid:2417726110.1016/j.toxlet.2013.10.022PMid:24177261Open DOISearch in Google Scholar

45. Goldin, B.R., Brauner, E., Adlercreutz, H., Ausman, L.M., Lichtenstein, A.H. (2005). Hormonal response to diets high in soy or animal protein without and with isoflavones in moderately hypercholesterolemic subjects. Nutr Cancer. 51, 1-6. https://doi.org/10.1207/s15327914nc5101_1 PMid:1574962310.1207/s15327914nc5101_1PMid:15749623Open DOISearch in Google Scholar

46. Jabbar, M.A., Larrea, J., Shaw, R.A. (1997). Abnormal thyroid function tests in infants with congenital hypothyroidism: the influence of soybased formula. J Am Coll Nutr. 16, 280-282. https://doi.org/10.1080/07315724.1997.10718686 PMid:917683610.1080/07315724.1997.10718686PMid:9176836Open DOISearch in Google Scholar

47. Divi, R.L., Chang, H.C., Doerge, D.R. (1997). Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochem Pharmacol. 54, 1087-1096. https://doi.org/10.1016/S0006-2952(97)00301-810.1016/S0006-2952(97)00301-8Open DOISearch in Google Scholar

48. Persky, V.W., Turyk, M.E., Wang, L., Freels, S., Chatterton, R.Jr., Barnes, S., Erdman, J.Jr., Sepkovic, D.W., Bradlow, H.L., Potter, S. (2002). Effect of soy protein on endogenous hormones in postmenopausal women. Am J Clin Nutr. 75, 145-153. PMid:1175607210.1093/ajcn/75.1.145Search in Google Scholar

49. Patisaul H., Jefferson W. (2010). The pros and cons of phytoestrogens Front Neuroendocrinol. 31(4): 400–419. https://doi.org/10.1016/j.yfrne.2010.03.003 PMid:20347861 PMCid:PMC307442810.1016/j.yfrne.2010.03.003PMid:20347861PMCid:PMC3074428Open DOISearch in Google Scholar

50. Cone R., Low M., Elmquist J., Cameron J. D. (2011). Anterior pituitary. In: Larsen PR, Kronenberg HM., Melmed S., Plonsky KS, (Eds.), Williams: Text book of Endocrinology. (pp. 81-176). Philadelphia: WB Saunders Company. PMCid:PMC1308188Search in Google Scholar

51. Melmed, S., Kleinberg. (2011). Anterior pituitary. In: Larsen PR, Kronenberg HM., Melmed S., Plonsky KS, (Eds.), Williams: Text book of Endocrinology. (pp. 175-279). Philadelphia: WB Saunders Company.Search in Google Scholar

52. Muller, E.E., Locatelli, V., Cocchi, D. (1999) Neuroendocrine control of growth hormone secretion. Physiol Rev. 79, 511-607. PMid:1022198910.1152/physrev.1999.79.2.511Search in Google Scholar

53. Whitnall, M.H. (1993). Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Progr Neurobiol. 40, 573–629. https://doi.org/10.1016/0301-0082(93)90035-Q10.1016/0301-0082(93)90035-QOpen DOISearch in Google Scholar

54. Brooks, A. N. (1998). Natural and anthropogenic environmental oestrogens: the scientific basis for risk assessment. Comparative physiology of the reproductive endocrine system in laboratory rodents and humans. Pure Appl Chem. 70, 1633-1646. https://doi.org/10.1351/pac19987009163310.1351/pac199870091633Open DOISearch in Google Scholar

55. Horvath, E., Kovacs, K. (1988). Fine structural cytology of the adenohypophysis in rat and man. J Electron Microsc Tech. 8, 401-432. https://doi.org/10.1002/jemt.1060080410 PMid:305888710.1002/jemt.1060080410Search in Google Scholar

56. Dada, M.O., Campbell, G.T., Blake, C.A. (1984). Pars distalis cell quantification in normal adult male and female rats. J Endocrinol. 101, 87-94 https://doi.org/10.1677/joe.0.101008710.1677/joe.0.1010087Open DOISearch in Google Scholar

57. Milošević, V., Brkić, B., Velkovski, S.D., Sekulić, M., Lovren, M., Starčević, V., Severs W.B. (1998). Morphometric and functional changes of rat pituitary somatotropes and lactotropes after central administration of somatostatin. Pharmacology 57, 28–34. https://doi.org/10.1159/000028223 PMid:967021010.1159/000028223PMid:9670210Open DOISearch in Google Scholar

58. Milošević, V., Ajdžanović, V. (2014). Pituitary hormone-producing cells after estradiol application in rat models of menopause. Serbian Journal of Experimental and Clinical Research 15, 115-120. https://doi.org/10.5937/sjecr1403115M10.5937/sjecr1403115Open DOISearch in Google Scholar

59. Milosević, V., Sekulić, M., Brkić, B., Lovren, M., Starcević, V. (2000). Effect of centrally administered somatostatin on pituitary thyrotropes in male rats. Histochem J. 32, 565-569. https://doi.org/10.1023/A:1004158412915 PMid:1112797810.1023/A:1004158412915PMid:11127978Open DOISearch in Google Scholar

60. Vankelecom, H. (2007). Non-hormonal cell types in the pituitary candidating for stem cell. Semin Cell Dev Biol. 18, 559-570. https://doi.org/10.1016/j.semcdb.2007.04.006 PMid:1750991210.1016/j.semcdb.2007.04.006PMid:17509912Open DOISearch in Google Scholar

61. Vankelecom, H., Gremeaux, L. (2010). Stem cells in the pituitary gland: A burgeoning field. Gen Comp Endocrinol. 166, 478-488. https://doi.org/10.1016/j.ygcen.2009.11.007 PMid:1991728710.1016/j.ygcen.2009.11.007PMid:19917287Open DOISearch in Google Scholar

62. Hauspie, A., Seuntjens, E., Vankelecom, H., Denef, C. (2003). Stimulation of combinatorial expression of prolactin and glycoprotein hormone alpha-subunit genes by gonadotropin-releasing hormone and estradiol-17beta in single rat pituitary cells during aggregate cell culture. Endocrinology 144, 388-399. https://doi.org/10.1210/en.2002-220606 PMid:1248836710.1210/en.2002-220606PMid:12488367Open DOISearch in Google Scholar

63. Mignot, M., Skinner, D.C. (2005). Colocalization of GH, TSH and prolactin, but not ACTH, with beta LH-immunoreactivity: evidence for pluripotential cells in the ovine pituitary. Cell Tissue Res. 319, 413-421. https://doi.org/10.1007/s00441-004-1009-0 PMid:1564791910.1007/s00441-004-1009-0PMid:15647919Open DOISearch in Google Scholar

64. Mitchner, N.A., Garlick, C., Ben-Jonathan, N. (1998). Cellular distribution and gene regulation of estrogen receptors alpha and beta in the rat pituitary gland. Endocrinology 139, 3976-3983. https://doi.org/10.1210/endo.139.9.6181 PMid:972405310.1210/endo.139.9.6181PMid:9724053Open DOISearch in Google Scholar

65. Yin, P., Kawashima, K., Arita, J. (2002). Direct actions of estradiol on the anterior pituitary gland are required for hypothalamus-dependent lactotrope proliferation and secretory surges of luteinizing hormone but not of prolactin in female rats. Neuroendocrinology 75, 392-401. https://doi.org/10.1159/000059436 PMid:1206589210.1159/000059436PMid:12065892Open DOISearch in Google Scholar

66. Milošević, V., Starčević V., Šošić-Jurjević, B., Filipović, B., Trifunović, S., Ristić, N., Nestorović, N., Manojlović, M., Sekulić, M. (2007). Effect of estradiol or calcium treatment on mammotrophs of female middle-aged rats. Acta Vet. 57, 393-402. https://doi.org/10.2298/AVB0706393M10.2298/AVB0706393Open DOISearch in Google Scholar

67. Trifunović, S., Manojlović-Stojanoski, M., Ajdzanović, V., Nestorović, N., Ristić, N., Medigović, I., Milošević V. (2012). Genistein stimulates the hypothalamo-pituitary-adrenal axis in adult rats: morphological and hormonal study. Histol Histopathol. 27, 627-640. PMid:22419027Search in Google Scholar

68. Trifunović, S., Manojlović-Stojanoski, M., Ajdžanović, V., Nestorović, N., Ristić, N., Medigović, I., Milošević, V. (2014). Effects of genistein on stereological and hormonal characteristics of the pituitary somatotrophs in rats. Endocrine 47, 869-877. https://doi.org/10.1007/s12020-014-0265-3 PMid:2475239410.1007/s12020-014-0265-3PMid:24752394Open DOISearch in Google Scholar

69. Sekulić, M., Lovren, M., Milosević, V. (1998). Immunoreactive TSH cells in the pituitary of female middle-aged rats after treatment with estradiol or calcium. Acta Histochem. 100, 185-191 https://doi.org/10.1016/S0065-1281(98)80026-310.1016/S0065-1281(98)80026-3Open DOISearch in Google Scholar

70. von Bartheld CS1, Wouters FS, Quantitative techniques for imaging cells and tissues. Cell Tissue Res. 2015 Apr;360(1): 1-4. https://doi.org/10.1007/s00441-015-2149-0 PMid:25773453 PMCid:PMC438076310.1007/s00441-015-2149-0PMid:25773453PMCid:PMC4380763Open DOISearch in Google Scholar

71. Childs, G.V. (2002). Development of gonadotropes may involve cyclic transdifferentiation of growth hormone cells. Arch Physiol Biochem. 110, 42–49. https://doi.org/10.1076/apab.110.1.42.906 PMid:1193539910.1076/apab.110.1.42.906PMid:11935399Open DOISearch in Google Scholar

72. Trifunović S., Manojlović-Stojanoski M., Ristić N., Nestorović N., Medigović I., Živanović J., Milošević V. (2016). Changes of growth hormone-releasing hormone and somatostatin neurons in the rat hypothalamus induced by genistein: a stereological study. Nutr Neurosci. 19(10): 467-474. https://doi.org/10.1179/1476830514Y.000000014310.1179/1476830514Y.000000014325087680Search in Google Scholar

73. Shimizu, T., Kamegai, J., Tamura, H., Ishii, S., Sugihara, H., Oikawa, S. (2005). The estrogen receptor (ER) alpha, but not ER beta, gene is expressed in hypothalamic growth hormonereleasing hormone neurons of the adult female rat. Neurosci Res. 52, 121-125. https://doi.org/10.1016/j.neures.2005.02.002 PMid:1581155910.1016/j.neures.2005.02.002PMid:15811559Open DOISearch in Google Scholar

74. Misztal, T., Wańkowska, M., Górski, K., Romanowicz, K. (2007). Central estrogen-like effect of genistein on growth hormone secretion in the ewe. Acta Neurobiol Exp (Wars). 67, 411-419.Search in Google Scholar

75. Ajdžanović, V., Medigović, I., Živanović, J., Šošić-Jurjević B., Trifunović, S., Tanić, N., Miločević, V. (2014). Immunohistomorphometric and fluorescent characteristics of GH cells after treatment with genistein or daidzein in an animal model of andropause. Acta Vet. 64, 93-104. https://doi.org/10.2478/acve-2014-001010.2478/acve-2014-0010Open DOISearch in Google Scholar

76. Romanowicz, K., Misztal, T., Barcikowski, B. (2004). Genistein, a phytoestrogen, effectively modulates luteinizing hormone and prolactin secretion in ovariectomized ewes during seasonal anestrus. Neuroendocrinology 79, 73-81. https://doi.org/10.1159/000076630 PMid:1500442910.1159/000076630PMid:15004429Open DOISearch in Google Scholar

77. Gonzalez, M., Reyes, R., Damas, C., Alonso, R., Bello, AR. (2008). Estrogen receptor alpha and beta in female rat pituitary cells, an immunochemical study. Gen Comp Endocrinol. 155, 857–868. https://doi.org/10.1016/j.ygcen.2007.10.007 PMid:1806789310.1016/j.ygcen.2007.10.007PMid:18067893Open DOISearch in Google Scholar

78. Asnacios, A., Hamant, O. (2012). The mechanics behind cell polarity. Trends Cell Biol. 22, 584–591. https://doi.org/10.1016/j.tcb.2012.08.005 PMid:2298003410.1016/j.tcb.2012.08.005PMid:22980034Open DOISearch in Google Scholar

79. Medigović, I., Ristić, N., Trifunović, S., Manojlović-Stojanoski, M., Milošević, V., Zikić, D., Nestorović, N. (2012). Genistein affects ovarian folliculogenesis: a stereological study. Microsc Res Tech. 75, 1691-1699. https://doi.org/10.1002/jemt.22117 PMid:2292704010.1002/jemt.22117PMid:22927040Open DOISearch in Google Scholar

80. Ohno, S., Nakajima, Y., Inoue, K., Nakazawa, H., Nakajin, S. (2003). Genistein administration decreases serum corticosterone and testosteronelevels in rats. Life Sci. 74, 733–742. https://doi.org/10.1016/j.lfs.2003.04.006 PMid:1465416610.1016/j.lfs.2003.04.006PMid:14654166Open DOISearch in Google Scholar

81. Wójcik-Gładysz, A., Romanowicz, K., Misztal, T., Polkowska, J., Barcikowski, B. (2005). Effects of intracerebroventricular infusion ofgenistein on the secretory activity of the GnRH/LH axis in ovariectomized ewes. Anim Reprod Sci. 86, 221–235. https://doi.org/10.1016/j.anireprosci.2004.08.004 PMid:1576680210.1016/j.anireprosci.2004.08.004PMid:15766802Open DOISearch in Google Scholar

82. Polkowska, J., Ridderstråle, Y., Wankowska, M., Romanowicz, K., Misztal, T., Madej, A. (2004). Effects of intracerebroventricular infusion of genistein on gonadotrophin subunit mRNA and immunoreactivity of gonadotrophins and oestrogen receptor-alpha in the pituitary cells of the anoestrous ewe. J Chem Neuroanat. 28, 217–224. https://doi.org/10.1016/j.jchemneu.2004.07.004 PMid:1553113310.1016/j.jchemneu.2004.07.004PMid:15531133Open DOISearch in Google Scholar

83. Bliedtner, A., Zierau, O., Albrecht, S., Liebhaber, S., Vollmer, G. (2010). Effects of genistein and estrogen receptor subtype-specific agonists in ArKO mice following different administration routes. Mol Cell Endocrinol. 314, 41–52. https://doi.org/10.1016/j.mce.2009.07.032 PMid:1968680410.1016/j.mce.2009.07.032PMid:19686804Open DOISearch in Google Scholar

84. Childs, G.V., Ellison, D.G., Ramaley, J.A. (1982). Storage of anteriorlobe adrenocorticotropin in corticotropes and a subpopulation of gonadotropes during the stress-nonresponsive period in the neonatal male rat. Endocrinology 110, 1676-1692. https://doi.org/10.1210/endo-110-5-1676 PMid:628097110.1210/endo-110-5-1676PMid:6280971Open DOISearch in Google Scholar

85. Milošević, V., Ajdžanović, V., Sošic-Jurjevic, B., Filipovic, B., Brkic, M., Nestorovic, N., Sekulic, M. (2009). Morphofunctional characteristics of ACTH cells in middle-aged male rats after treatment with genistein. Gen Physiol Biophys 28, 94-97. https://doi.org/10.4149/gpb_2009_01_94 PMid:1939014210.4149/gpb_2009_01_94PMid:19390142Open DOISearch in Google Scholar

86. Zhang, Q.H., Hu, Y.Z., Zhou, S.S., Wang F.Z. (2001). Inhibitory effect, of, genistein on the proliferation of the anterior pituitary cells of rats. Sheng Li Xue Bao 53, 51-54. PMid:11354798Search in Google Scholar

87. Hauger, R.L., Thrivikraman, K.V. Plotsky, P.M. (1994). Age-related alterations of hypothalamicpituitary-adrenal axis function in male Fischer 344 rats. Endocrinology 134, 1528-1536. https://doi.org/10.1210/endo.134.3.8119195 PMid:811919510.1210/endo.134.3.8119195PMid:8119195Open DOISearch in Google Scholar

88. Šošić-Jurjević, B., Filipović, B., Ajdžanović, V., Savin, S., Nestorović, N., Milošević, V., Sekulić, M. (2010). Suppressive effects of genistein and daidzein on pituitary-thyroid axis in orchidectomized middle-aged rats. Exp Biol Med (Maywood). 235, 590-598. https://doi.org/10.1258/ebm.2009.009279 PMid:2046329910.1258/ebm.2009.009279PMid:20463299Open DOISearch in Google Scholar

89. Modaresi, M., Khorrami, H., Asadi-Samani, M. (2014). The effect of feeding with soybean on serum levels of TSH, T3 and T4 in male mice. J Herb Med Pharmacol. 3, 93-96.Search in Google Scholar

eISSN:
1857-7415
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Medicine, Basic Medical Science, Veterinary Medicine