Cite

1. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes and Development 16, 6-21. http://dx.doi.org/10.1101/gad.947102 PMid:1178244010.1101/gad.947102Search in Google Scholar

2. Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nature Reviews Genetics 3, 662–673. http://dx.doi.org/10.1038/nrg887 PMid:1220914110.1038/nrg887Search in Google Scholar

3. Fulka, H., St John, J.C., Fulka, J., Hozak, P. (2008). Chromatin in early mammalian embryos: achieving the pluripotent state. Differentiation 76, 3-14. http://dx.doi.org/10.1111/j.1432-0436.2007.00247.x PMid:1809322610.1111/j.1432-0436.2007.00247.xSearch in Google Scholar

4. Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., Reik, W. (2001). Conservation of methylatio reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the USA 98, 13734-13738. http://dx.doi.org/10.1073/pnas.241522698 PMid:11717434 PMCid:PMC6111010.1073/pnas.241522698Search in Google Scholar

5. Deshmukh, R.S., Østrup, O., Østrup, E., Vejlsted, M., Niemann, H., Lucas-Hahn, A., Petersen, B., Li, J., Callesen, H., Hyttel, P. (2011). DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer. Epigenetics 6 (2): 177-187. http://dx.doi.org/10.4161/epi.6.2.13519 PMid:2093545410.4161/epi.6.2.13519Search in Google Scholar

6. Seisenberger, S., Peat, J.R., Hore, T.A., Santos, F., Dean, W., Reik, W. (2013). Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci. 368(1609): 20110330. http://dx.doi.org/10.1098/rstb.2011.0330 PMid:23166394 PMCid:PMC353935910.1098/rstb.2011.0330Search in Google Scholar

7. Bestor, T. H. (2000). The DNA methyltransferases of mammals. Human Molecular Genetics 9, 2395-2402. http://dx.doi.org/10.1093/hmg/9.16.2395 PMid:1100579410.1093/hmg/9.16.2395Search in Google Scholar

8. Chen, T., Li, E. (2004). Structure and function of eukaryotic DNA methyltransferases. Current Topics in Developmental Biology 60, 55-89. http://dx.doi.org/10.1016/S0070-2153(04)60003-210.1016/S0070-2153(04)60003-2Search in Google Scholar

9. Howell, C. Y., Bestor, T. H., Ding, F. (2001). Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104, 829–38. http://dx.doi.org/10.1016/S0092-8674(01)00280-X10.1016/S0092-8674(01)00280-XSearch in Google Scholar

10. Smallwood, S. A., Kelsey, G. (2012). De novo DNA methylation: a germ cell perspective. Trends in Genetics 28 (1): 33-42. http://dx.doi.org/10.1016/j.tig.2011.09.004 PMid:2201933710.1016/j.tig.2011.09.00422019337Search in Google Scholar

11. Holker, M., Petersen, B., Hassel, P. (2005). Duration of in vitro maturation of recipient oocytes affects blastocyst development of cloned porcine embryos. Cloning and Stem Cells 7, 35–44. http://dx.doi.org/10.1089/clo.2005.7.35 PMid:1599611610.1089/clo.2005.7.35Search in Google Scholar

12. Kang, Y.K., Koo, D.B., Park, J.S., Choi, Y.H., Chung, A.S., Lee, K.K., Han, Y.M. (2001). Aberrant methylation of donor genome in cloned bovine embryos. Nature Genetics 28, 173–177. http://dx.doi.org/10.1038/88903 PMid:1138126710.1038/88903Search in Google Scholar

13. Zhao, J., Whyte, J., Prather, R.S. (2010). Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell and Tissue Research 341, 13-21. http://dx.doi.org/10.1007/s00441-010-1000-x PMid:2056360210.1007/s00441-010-1000-xSearch in Google Scholar

14. Denomme, M.M., Mann, M.R.W. (2013). Maternal control of genomic imprint maintenance. Reproductive Biomedicine Online 27 (6): 629-636. http://dx.doi.org/10.1016/j.rbmo.2013.06.004 PMid:2412594610.1016/j.rbmo.2013.06.004Search in Google Scholar

15. Sawai, K., Takahashi, M., Moriyasu, S., Hirayama, H., Minamihashi, A., Hashizume, T., Onoe, S. (2010). Changes in the DNA methylation status of bovine embryos from the blastocyst to elongated stage derived from somatic cell nuclear transfer. Cellular Reprogramming 12 (1): 15-22. http://dx.doi.org/10.1089/clo.2009.0039 PMid:1978069910.1089/clo.2009.0039Search in Google Scholar

16. Okano, M., Bell, D., Haber, D., Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257. http://dx.doi.org/10.1016/S0092-8674(00)81656-610.1016/S0092-8674(00)81656-6Search in Google Scholar

17. Vassena, R., Dee Schramm, R., Latham, K. E. (2005). Species-dependent expression patterns of DNA methyltransferase genes in mammalian oocytes and preomplantation embryos. Molecular Reproduction and Development 72, 430-436. http://dx.doi.org/10.1002/mrd.20375 PMid:1615595910.1002/mrd.20375Search in Google Scholar

18. Bortvin, A., Eggan, K., Skaletsky, H., Akutsu, H., Berry, D. L., Yanagimachi, R., Page, D. C., Jaenisch, R. (2003). Incomplete reactivation of Oct4 related genes in mouse embryos cloned from somatic nuclei. Development 130, 1673–1680. http://dx.doi.org/10.1242/dev.00366 PMid:1262099010.1242/dev.00366Search in Google Scholar

19. Golding, M. C., Westhusin, M. E. (2003). Analysis of DNA (cytosine 5) methyltransferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues. Gene Expression Patterns 3, 551–558. http://dx.doi.org/10.1016/S1567-133X(03)00121-210.1016/S1567-133X(03)00121-2Search in Google Scholar

20. Wrenzycki, C., Herrmann, D., Keskintepe, L., Martins, A. Jr., Sirisathien, S., Brackett, B., Niemann, H. (2001). Effects of culture system and protein supplementation on mRNA expression in preimplantation bovine embryos. Human Reproduction 16, 893-901. http://dx.doi.org/10.1093/humrep/16.5.893 PMid:1133163510.1093/humrep/16.5.89311331635Search in Google Scholar

21. Zhu, H., Craig, J. A., Dyce, P. W., Sunnen, N., Li, J. (2004). Embryos derived from porcine skin-derived stem cells exhibit enhanced preimplantation development. Biology of Reproduction 71, 1890–1897. http://dx.doi.org/10.1095/biolreprod.104.032227 PMid:1530655510.1095/biolreprod.104.03222715306555Search in Google Scholar

22. Kumar, B. M., Jin, H. F., Kim, J. G., Ock, S. A., Hong, Y., Balasubramanian, S., Choe, S. Y., Rho, G. J. (2007). Differential gene expression patterns in porcine nuclear transfer embryos reconstructed with fetal fibroblasts and mesenchymal stem cells. Developmental Dynamics 236 (2): 435-446. http://dx.doi.org/10.1002/dvdy.21042 PMid:1719123410.1002/dvdy.2104217191234Search in Google Scholar

23. Østrup, O., Strejcek, F., Petrovicova, I., Hahn, A. L., Morovic, M., Lemme, E., Petersen, B., Laurincikova, N., Niemann, H., Laurincik, J., Hyttel, P. (2011). Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle. Cellular Reprogramming 13 (2): 145-155. http://dx.doi.org/10.1089/cell.2010.0061 PMid:2147369110.1089/cell.2010.006121473691Search in Google Scholar

24. Do, V.H., Taylor-Robinson, A.W. (2014). Somatic cell nuclear transfer in mammals: Reprogramming mechanism and factors affecting success. Cloning and Transgenesis 3 (3): 1-5.Search in Google Scholar

eISSN:
1857-7415
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Medicine, Basic Medical Science, Veterinary Medicine