Cite

1. Actiņa, G., Geipele, I., and Zeltiņš, N. (2014). Role of building thermal inertia as a selection criterion of edifice renovation strategy and energy plan development in Latvia: Case study. In Proceedings of the 2014 International Conference on Frontier of Energy and Environment Engineering (ICFEEE 2014) / ed. by Wen-Pei Sung, Jimmy (C.M.) Kao, Taiwan, Taiwan, 6–7 December 2014. Leiden: CRC Press/Balkema, 2014, pp. 361–365. ISBN 978-1-138-02691-9. e-ISBN 978-1-315-73991-5. DOI:10.1201/b18135-7310.1201/b18135-73Search in Google Scholar

2. Ahn, Y.H., Jung, C.W., Suh, M., and Jeon, M.H. (2016). Integrated construction process for green building. Procedia Engineering, 145, 670–676. DOI: 10.1016/j.proeng.2016.04.06510.1016/j.proeng.2016.04.065Search in Google Scholar

3. Ambec, S., and Lanoie, P. (2008). Does it pay to be green? A systematic overview. Academy of Management Perspectives, 22, 45–62, as cited in Chen, P.-H., Ong, C.-F., & Hsu, S.-C. (2016). Understanding the relationships between environmental management practices and financial performances of multinational construction firms. Journal of Cleaner Production. 139, 750–760. http://dx.doi.org/10.1016/j.jclepro.2016.08.10910.1016/j.jclepro.2016.08.109Search in Google Scholar

4. Azar, E., Nikolopoulou, C., and Papadopoulos, S. (2016). Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modelling. Applied Energy, 183, 926–937. http://dx.doi.org/10.1016/j.apenergy.2016.09.02210.1016/j.apenergy.2016.09.022Search in Google Scholar

5. Balaban, O., and Oliveira, J. A. P. (2016). Sustainable buildings for healthier cities: Assessing the co-benefits of green buildings in Japan. Journal of Cleaner Production. Article in Press, 1–11. http://dx.doi.org/10.1016/j.jclepro.2016.01.08610.1016/j.jclepro.2016.01.086Search in Google Scholar

6. Calderón, C., James, Urquizo, J., and McLoughlin, A. (2015). A GIS domestic building framework to estimate energy end-use demand in UK sub-city areas. Energy and Buildings, 96, 236–250. http://dx.doi.org/10.1016/j.enbuild.2015.03.02910.1016/j.enbuild.2015.03.029Search in Google Scholar

7. Chan, E.H.W., Qian, Q.K., and Lam, P.T.I. (2009). The market for green building in developed Asian cities – The perspectives of building designers. Energy Policy, 37, 3061–3070. DOI:10.1016/j.enpol.2009.03.05710.1016/j.enpol.2009.03.057Search in Google Scholar

8. Christersson, M., Vimpari, J., and Junnila, S. (2015). Assessment of financial potential of real estate energy efficiency investments – A discounted cash flow approach. Sustainable Cities and Society, 18, 66–73. http://dx.doi.org/10.1016/j.scs.2015.06.00210.1016/j.scs.2015.06.002Search in Google Scholar

9. European statistics database Eurostat. Statistics database. Retrieved from http://ec.europa.eu/eurostat/data/databaseSearch in Google Scholar

10. Geipele, I., Geipele, S., Staube, T., Ciemleja, G., and Zeltins, N. (2016). The development of nanotechnologies and advanced materials industry in science and entrepreneurship: Socioeconomic and technical indicators. A case study of Latvia (Part Two). Latvian Journal of Physics and Technical Sciences, 53(5), 31–42. DOI: 10.1515/lpts-2016-003410.1515/lpts-2016-0034Search in Google Scholar

11. Ilhan, B., and Yaman, H. (2016). Green building assessment tool (GBAT) for integrated BIM-based design decisions. Automation in Construction. 70, 26–37. http://dx.doi.org/10.1016/j.autcon.2016.05.00110.1016/j.autcon.2016.05.001Search in Google Scholar

12. Kenisarin, M., and Mahkamov, K. (2016). Passive thermal control in residential buildings using phase change materials. Renewable and Sustainable Energy Reviews. 55, 371–398. http://dx.doi.org/10.1016/j.rser.2015.10.12810.1016/j.rser.2015.10.128Search in Google Scholar

13. Khalid, F., Dincer, I., and Rosen, M.A. (2016). Techno-economic assessment of a renewable energy based integrated multigeneration system for green buildings. Applied Thermal Engineering, 99, 1286–1294. http://dx.doi.org/10.1016/j.applthermaleng.2016.01.05510.1016/j.applthermaleng.2016.01.055Search in Google Scholar

14. Krasowska, K., and Olczyk, N. (2015). Energieprobleme mit Plattenbauten [Energy Problems in Prefabricated Buildings]. In Schmidt, B., Schmidt, D., & Venymer, H. (Hrsg.) Energieökonomisch Wohnen: 9. Konferenz Solarökologische Bausanierung im SolarZentrum Mecklenburg-Vorpommern. Internationale Konferenz Solarökologische Bausanierung [Energy Economical Living: 9th Conference Solar Ecological Building Restoration in the Solar Center Mecklenburg-Vorpommern], pp. 135–148, 2015, Lübow-Wietow. Berlin Wien Zürich: Beuth Ltd.Search in Google Scholar

15. Liua, H., and Lin, B. (2016). Ecological indicators for green building construction. Ecological Indicators, 67, 68–77. http://dx.doi.org/10.1016/j.ecolind.2016.02.02410.1016/j.ecolind.2016.02.024Search in Google Scholar

16. Office of the Federal Environmental Executive (2003). The Federal Commitment to Green Building: Experiences and Expectations. As cited in Marble institute. Green building – History of Green buildings. Retrieved from http://www.marble-institute.com/default/assets/File/consumers/historystoneingreenbuilding.pdfSearch in Google Scholar

17. Ouyang, X., and Lin., B. (2015). Analyzing energy savings potential of the Chinese building materials industry under different economic growth scenarios. Energy and Buildings, 109, 316–327. http://dx.doi.org/10.1016/j.enbuild.2015.09.06810.1016/j.enbuild.2015.09.068Search in Google Scholar

18. Qin, X., Mo, Y., and Jing. L. (2016). Risk perceptions of the life-cycle of green buildings in China. Journal of Cleaner Production, 126, 148–158.http://dx.doi.org/10.1016/j.jclepro.2016.03.10310.1016/j.jclepro.2016.03.103Search in Google Scholar

19. RTU Marketing and Communication Department (2016). RTU radītā unikālā līdzstrāvas elektroapgādes sistēma ļaus ietaupīt līdz 15% elektroenerģijas [Unique DC Power Supply System Created at RTU will save up to 15 % of Electricity]. Retrieved from https://ortus.rtu.lv/f/u101l1s187/p/rtu-jps-arhivs.u101l1n201/max/render.uP?pCm=view&pP_action=article&pP_id=22777#Pluto_151_u101l1n201_9678_containerSearch in Google Scholar

20. Sakipova, S., Jakovics, A., Gendelis, S., and Buketov, E.A. (2016). The potential of renewable energy sources in Latvia. Latvian Journal of Physics and Technical Sciences, 53(1), 3–13. DOI: 10.1515/lpts-2016-0001.10.1515/lpts-2016-0001Search in Google Scholar

21. Saulessūknis. Solārās apkures sistēma [Saulessuknis. A solar heating system]. (2015). http://saulessuknis.lv as cited in Sakipova, S., Jakovics, A., Gendelis, S., & Buketov, E.A. (2016). The potential of renewable energy sources in Latvia. Latvian Journal of Physics and Technical Sciences, 53(1), 3–13. DOI: 10.1515/lpts-2016-0001.10.1515/lpts-2016-0001Search in Google Scholar

22. Shi, Q., Yan, Y., Zuo, J., and Yu, T. (2016). Objective conflicts in green buildings projects: A critical analysis. Building and Environment, 96, 107–117. http://dx.doi.org/10.1016/j.buildenv.2015.11.01610.1016/j.buildenv.2015.11.016Search in Google Scholar

23. Vigants, E. (2014). Renewable energy in Latvia. In Conf. Renewable Energy in the Baltics and the Future of European Energy Security, Washington, DC, December 15, 2014. Retrieved from https://us.boell.org/sites/default/files/uploads/2015/02/edgars_vigants_laef_prezentation_washington_ev_final.pdfSearch in Google Scholar

24. Vyas, G.S., and Jha, K.N. (2017). Benchmarking green building attributes to achieve cost effectiveness using a data envelopment analysis. Sustainable Cities and Society, 28, 127–134. http://dx.doi.org/10.1016/j.scs.2016.08.02810.1016/j.scs.2016.08.028Search in Google Scholar

25. Wang, W., Zmeureanu, R., and Rivard, H. (2005). Applying multi-objective genetic algorithmsin green building design optimization. Building and Environment, 40, 1512–1525. DOI:10.1016/j.buildenv.2004.11.01710.1016/j.buildenv.2004.11.017Search in Google Scholar

26. Wing, S.N.C., Canha, D., and Pretorius, J.H.C. (2015). Residential solar water heating - Measurement and verification. Case studies. In 8th International Conference on Energy Efficiency in Domestic Appliances and Lighting. 26–28 August 2015, Lucerne-Horw, Switherland. Retrieved from https://iet.jrc.ec.europa.eu/energyefficiency/sites/energyefficiency/files/events/EEDAL15/S15_Heating-cooling-1/eedal15_submission_90.pdfSearch in Google Scholar

27. Zhao, D., McCoy, A., and Du, J. (2016). An empirical study on the energy consumption in residential buildings after adopting green building standards. Procedia Engineering, 145, 766–773. DOI: 10.1016/j.proeng.2016.04.10010.1016/j.proeng.2016.04.100Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics