Open Access

Theoretical and Experimental Investigations of Cylindrical Air-Heating Solar Collector


Cite

1. Abdulhadi, M.. and Ghorayeb, F. (2006). A self-tractable solar collector. International Journal of Sustainable Energy, 25(2), 63–78.10.1080/14786450600594939Search in Google Scholar

2. Ahwide, F., Spena, A., and El-Kafrawy, A. (2013). Correlation for the average daily diffuse fraction with clearness index and estimation of beam solar radiation and possible sunshine hours fraction in Sabha, Ghdames and Tripoli – Libya. APCBEE Procedia, 5, 208–220.10.1016/j.apcbee.2013.05.037Search in Google Scholar

3. Andersen, E. et al. (2015). Measurements of the angular distribution of diffuse irradiance. Energy Procedia, 70, 729–736.10.1016/j.egypro.2015.02.182Search in Google Scholar

4. http://ssd.jpl.nasa.gov/horizons.cgi.Search in Google Scholar

5. ISO 9488:1999(E/F) 3.24.Search in Google Scholar

6. Chikh, M., Mahrane, A., and Haddadi, M. (2012). Modeling the diffuse part of the global solar radiation in Algeria. Energy Procedia, 18, 1068–1075.10.1016/j.egypro.2012.05.121Search in Google Scholar

7. Chong, K.K., and Wong, C.W. (2009). General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector. Solar Energy, 83, 298–305.10.1016/j.solener.2008.08.003Search in Google Scholar

8. Hobbi, A., and Siddiqui, K. (2009). Optimal design of a forced circulation solar water heating system for a residental unit in cold climate using TRNSYS. Solar Energy, 83, 700–714.10.1016/j.solener.2008.10.018Search in Google Scholar

9. Young, A.T. (1994). Air mass and refraction. Applied Optics, 33, 1108–1110.10.1364/AO.33.00110820862124Search in Google Scholar

10. Kadirgan, F. (2006). Electrochemical nano-coating processes in solar energy systems. Hindawi Publishing Corporation International Journal of Photoenergy, (Article ID 84891), 1–5.10.1155/IJP/2006/84891Search in Google Scholar

11. Kurtbas, I., and Durmus, A. (2007). A comparison of a new type conical solar collector with a flat-plate solar collector. e-Journal of New World Sciences Academy, 2 (Article Number A0028 ISSN 1306-3111).Search in Google Scholar

12. Meclouch, R.F., and Brahim, A. B. (2008). A global solar radiation model for the design of solar energy systems. Asian Journal of Scientific Research, 1(3), 231–238.10.3923/ajsr.2008.231.238Search in Google Scholar

13. Mghouchi, Y. et al. (2014). New model to estimate and evaluate the solar radiation. International Journal of Sustainable Built Environment, 3(2), 225–234. Available at: http://www.sciencedirect.com/science/article/pii/S221260901400051X.Search in Google Scholar

14. Pelece, I., Vanags, M., and Migla, L. (2010). Evaluation of atmospheric lucidity and diffused radiation. Latvian Journal of Physics and Technical Sciences, 6, 40–46.10.2478/v10047-010-0029-7Search in Google Scholar

15. Pelece, I., and Ziemelis, I. (2012). Water heating effectiveness of semi-spherical solar collector. In Proceedings of International Scientific Conference “Renewable Energy and Energy Efficiency”. LLU, ISBN 978-9984-48-070-1, 185–188.Search in Google Scholar

16. Siwulski, S., Nocun, M., and Gruszka, B. (2005). Glassy coating for solar energy conversion. Optica Applicata, 35(4).Search in Google Scholar

17. Slama, R. B. (2009). Incidental solar radiation according to the solar collector slope – Horizontal measurements conversion on an inclined panel laws. The Open Renewable Energy Journal, 2, 52–58.10.2174/1876387100902010052Search in Google Scholar

18. Zagars, J., and Vilks, I. (2005). Astronomija augstskolam, Riga, Latvia: LU.Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics