Cite

1. Sievers, J., Faulstich, S., Puchta, M., Stadler, I., & Schmid, J. (2007). Long-term perspectives for balancing fluctuating renewable energy sources. Kassel, Germany: University of Kassel, Department of Efficient Energy Conversion. Available at http://desire.iwes.fraunhofer.de/files/deliverables/del_2.3.pdfSearch in Google Scholar

2. Environment and Renewable Energy Industry in Latvia. (2013). Available at http://www.liaa.gov.lv/files/liaa/attachments/k_2013environment_and_renewable_energy_industry_in_latvia.pdfSearch in Google Scholar

3. Lukutin, B., Surzhikova, O., & Shandarova, E. (2008). Vozobnovlyayemaya energetika v detsentralizovannom elektrosnabzhenii [Renewable energy in decentralized power supply]. Moscow: EnergoatomizdatSearch in Google Scholar

4. Goran Wall, M. (2014). Life cycle exergy analysis of solar energy systems. J Fundam Renewable Energy Appl., 05(01). doi:10.4172/2090-4541.1000146.10.4172/2090-4541.1000146Search in Google Scholar

5. Alpicair. (2015). AlpicAir gaiss-gaiss siltumsūkņi, zemes ūdens siltumsūkņi un saules kolektori [AlpicAir air-to-air heat pumps, ground water heat pumps and solar collectors]. Available at http://alpicair.lvSearch in Google Scholar

6. Tipy solnechnykh batarey i ikh KPD [Types of solar panels and their efficiency]. (2015). Available at http://utem.org.ua/materials/show/%20tipy_solnechnyhSearch in Google Scholar

7. Al’ternativnaya energiya. Solnechnaya energetika [Alternative energy. Solar power]. (2015). Available at http://alternativenergy.ru/solnechnaya-energetika/Search in Google Scholar

8. MIEL Group. (2015). “Sun Republic” v Latvii poluchil grant Yevrosoyuza [“Sun Republic” received a grant from the European Union in Latvia]. Available at http://www.miel.ru/lenta/3486/Search in Google Scholar

9. Sailessūknis. Solārās apkures sistēma [Saulessuknis. A solar heating system]. (2015). Available at http://saulessuknis.lvSearch in Google Scholar

10. Bezrukovs, V., Bezrukovs, V., Zacepins, A., & Komashilovs, V. (2015). Assessment of wind shear and wind energy potential in the Baltic Sea region of Latvia. Latvian Journal of Physics and Technical Sciences, 52(2), 26–39. doi:10.1515/lpts-2015-000910.1515/lpts-2015-0009Search in Google Scholar

11. Lizuma, L., Avotniece, Z., Rupainis, S., & Teilans, A. (2013). Assessment of the present and future offshore wind power potential: a case study in a target territory of the Baltic Sea near the Latvian coast. The Scientific World Journal, 2013, 1–10. doi:10.1155/2013/12642810.1155/2013/126428374597323983619Search in Google Scholar

12. Rolik, Y., & Gornostay, A. (2015). Analiz osnovnykh ekonomicheskikh pokazateley raboty vetroustanovok po rezul’tatam opyta kommercheskoy ekspluatatsii vetroparkov Latvii [Analysis of the major economic factors of the wind turbines performance based on the results of commercial service experience of the wind-farms in Latvia]. Izvestiya vysshikh uchebnykh zavedeniy i energeticheskikh ob”yedineniy SNG. Energetika [News of higher educational institutions and the energy association in CIS countries. Energetics], 2, 88–94. Available at http://rep.bntu.by/handle/data/17335Search in Google Scholar

13. EEM. (2015). Energoefektivitātes monitorings [Energy efficiency monitoring]. Available at http://www.eem.lvSearch in Google Scholar

14. Laboratory for Mathematical Modelling of Environmental and Technological Processes. (2015). Available at http://www.modlab.lvSearch in Google Scholar

15. Latvian Environment, Geology and Meteorology Centre. (2015). Operational Information. Available at http://www.meteo.lv/en/meteorologijas-operativa-informacija/Search in Google Scholar

16. Regulations of the Cabinet of Ministers of the Republic of Latvia. (2015). Latvian Construction Standards LBN 003-01“Construction Climatology”Search in Google Scholar

17. Photovoltaic Geographical Information System. (2015). PV Potential Estimation Utility. Available at http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.phpSearch in Google Scholar

18. Sinergo. (2015). Saules bateriju sistēmas darbības tiešsaiste [Solar system operation online]. Available at http://sinergo.lv/1kw-system-online/Search in Google Scholar

19. Hansen, M. (2008). Aerodynamics of Wind Turbines. London: Earthscan.Search in Google Scholar

20. Sakipova, S., & Jakovics, A. (2014). Sail-type wind turbine for autonomous power supply: Possible use in Latvia. Latvian Journal of Physics and Technical Sciences, 51(6), 13–25. doi:10.1515/lpts-2014-003310.1515/lpts-2014-0033Search in Google Scholar

21. Sakipova, S., Jakovics, A., Gendelis, S., Kambarova, Z., & Kussaiynov, Y. (2014). Development of a sail type wind turbine for autonomous energy supply according to climate conditions. Eurasian Physical Technical Journal, 11(2), 11–19Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics