Open Access

Screen Printing of SU-8 Layers for Microstructure Fabrication / Ar Sietspiedi Uzklātu SU-8 Pārklājumi Mikro-Struktūru Izgatavošanai


Cite

1. Gelorme, J.D., Cox, R.J., and Gurrierez, S.A. (1989). Photoresist composition and printed circuit boards and packages made therewith. US4882245A.Search in Google Scholar

2. You, H., and Steck, A.J. (2013). Lightweight electrowetting display on ultrathin glass substrate. Society for Information Display, 21(5), 192-197.10.1002/jsid.169Search in Google Scholar

3. MicroChem (2001). SU-8 Negative Tone Photoresist Formulations 50-100, Data sheets.Search in Google Scholar

4. Luurtsema, G.A. (1997). Spin Coating for Rectangular Substrates. University of California.Search in Google Scholar

5. Garcano, G., Ceriani M., and Soglio, F. Spin coating with high viscosity photo-resist on square substrates - Applications in the thin film hybrid microwave integrated circuit field. Microelectronics International, 10(3), 12-20.10.1108/eb044507Search in Google Scholar

6. Gale, B.K, Eddings, M.A., Sundberg, S.O., Hatch, A., Kim, J., and Ho, T. (2007). Low- Cost MEMS Technologies. Elsevier.Search in Google Scholar

7. Yue, W., Li, C.W., Xu, T., and Yang, M. (2013). Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications. Biosensors and Bioelectronics, 15(41), 675-683.10.1016/j.bios.2012.09.04623122749Search in Google Scholar

8. Levario, T. J., Zhan, M., Lim, B., Shvartsman, S.Y., and Lu, H. (2013). Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nature America, 8(4), 721-736.10.1038/nprot.2013.03423493069Search in Google Scholar

9. Moser, Y., Forti, R., Jiguet, S., Lehnert, T., and Gijs, M. (2010). Suspended SU-8 structures for monolithic microfluidic channels. Microfluid Nanofluid, 10(1), 219-224.10.1007/s10404-010-0657-5Search in Google Scholar

10. Liu, J., Cai, B., Zhu, J., Ding, G., Zhao, X., Yang, C., and Chend, D. (2004). Process research of high aspect ratio microstructure using SU-8 resist. Microsystem Technologies, 10(4), 265-268.10.1007/s00542-002-0242-2Search in Google Scholar

11. Li, Y., Xiadong, W., Chong, L., Zhifeng, L., Denan, C., and Dehui, Y. (2005). Swelling of SU-8 structure in Ni mold fabrication by UV-LIGA technique. Microsystem Technologies, 11(12), 1272-1275.10.1007/s00542-005-0604-7Search in Google Scholar

12. Dai, W., Lian, K., and Wang, W. (2004). A quantitative study on the adhesion property of cured SU-8 on various metallic surfaces. Microsystem Technologies, 11(7), 526-534.10.1007/s00542-005-0587-4Search in Google Scholar

13. Dey, P., Pramanick, B., RaviShankar, A., Ganguly, P., and Das, S. (2010). Microstructuring of SU-8 resist for MEMS and bio-applications. International Journal on Smart Sensing and Intelligent Systems, 3(1), 118-129.10.21307/ijssis-2017-384Search in Google Scholar

14. Mao, X., Yang, J., Ji, A., and Yang, F. (2013). Two new Methods to Improve the Lithography Precision for SU-8 Photoresist on Glass Substrate. Journal of Microelectromechanical Systems, 22(1), 124-130.10.1109/JMEMS.2012.2219295Search in Google Scholar

15. Ahani, A., Saadati-Fard, L., Sodagar, A. M., and Boroumad F. A. (2011). Flexible PET/ ITO Electrode Array for Implantable Biomedical Applications. 33rd Annual International Conference of the IEEE EMBS, 30 August-03 September 2011, (2878-81), Boston, IEEE.10.1109/IEMBS.2011.609079422254942Search in Google Scholar

16. Li, P.C.H. (2005). Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery. Boca Raton, FL. CRC Press.10.1201/9781420027457Search in Google Scholar

17. Handbook Tech Tips for Screen Printers. (2001). USA: SaatiPrint.Search in Google Scholar

18. Campo, A., and Greiner, C. (2007). SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. Journal of Micromechanics and Microengineering, 17(6). 81-95.10.1088/0960-1317/17/6/R01Search in Google Scholar

19. Bikerman, J. (1941). Method of measuring contact angles. Ind. Eng. Chem. Anal. Ed., 13(6), 443-444.10.1021/i560094a026Search in Google Scholar

20. SU-8 2000 Permanent Epoxy negative photoresist Processing guidelines for SU-8 2100 and SU8-2150. MicroChem.Search in Google Scholar

21. Lide, D.R. (2005). CRC Handbook of Chemistry and Physics. CRC Press.Search in Google Scholar

22. Willfahrt, A., and Stephens, J. (2010). Optimizing stencil thickness and ink film deposit. International Circular of Graphic Education and Research, 6-17.Search in Google Scholar

23. Sarl, G. (2007). GM 1075 Technical Datasheet.Search in Google Scholar

24. Atthi, N., Nimittrakoolchai, O., Jeamsaksiri, W., Supothina, S., Hruanun, C., and Poyai, A. (2009). Study of optimization condition for spin coating of the photoresist film on rectangular substrate by taguchi design of an experiment. Songlanakarin Journal of Science and Technology, 31(3), 331-335.Search in Google Scholar

25. Snodgrass, T., and Newquist, C. (1994). Extrusion coating of polymers for next generation, large-area FPD manufacturing. Society for Information Display, 40-45.Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics