Open Access

Reduction of Electric Breakdown Voltage in LC Switching Shutters / Elektriskās Caursites Sprieguma Samazināšana Šķidro Kristālu Šūnās


Cite

1. Chen, J., Cranton, W., and Fihn, M. (2012). Handbook of Visual Display Technology, 1st ed. Springer-Verlag Berlin Heidelberg.Search in Google Scholar

2. Geis, M. W., Lyszczarz, T. M., Osgood, R. M., and Kimball, B. R. (2010). 30 to 50 ns liquid-crystal optical switches. Opt. Express 18 (18), 18886-18893.10.1364/OE.18.01888620940781Search in Google Scholar

3. Lu, Y., Guo, J., Wang, H., and Wei J. (2012). Flexible bistable smectic-A liquid crystal device using photolithography and photoinduced phase separation. Adv. Condens. Matter Phys., 2012, 1-9.10.1155/2012/843264Search in Google Scholar

4. Coates, D., Crossland, W. A., Morrissy, J. H., and Needham B. (1978). Electrically induced scattering textures in smectic A phases and their electrical reversal. Journal of Physics D: Applied Physics 11 (14), 2025-2034.10.1088/0022-3727/11/14/012Search in Google Scholar

5. Neusel, C., and Schneider, G. A. (2014). Size-dependence of the dielectric breakdown strength from nano- to millimeter scale. J. Mech. Phys. Solids 63(1), 201-213.10.1016/j.jmps.2013.09.009Search in Google Scholar

6. Palmer, S. (2005). Fast Optical Shutter. US 2005/0206820 A1, 2005.Search in Google Scholar

7. Grote, J. G. (2001). Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers. Opt. Eng. 40(11), 2464-2473.10.1117/1.1412227Search in Google Scholar

8. Scharf, T. (2006). Polarized Light in Liquid Crystals and Polymers, 1st ed. Wiley-Interscience.Search in Google Scholar

9. Dierking, I. (2001). Dielectric breakdown in liquid crystals. J. Phys. D. Appl. Phys. 34 (5), 806-813.10.1088/0022-3727/34/5/319Search in Google Scholar

10. Nandi, S. K., Llewellyn, D. J., Belay, K. D., Venkatachalam, K., Liu, X., and Elliman, R. G. (2014). Effect of microstructure on dielectric breakdown in amorphous HfO2 films. Microsc. Microanal. 20(3), 1984-1985.10.1017/S1431927614011659Search in Google Scholar

11. Mahdy, A. M., Anis, H. I., and Ward, S. A. (1998). Electrode roughness effects on the breakdown of air-insulated apparatus. IEEE Trans. Dielectr. Electr. Insul. 5(4), 612-617.10.1109/94.708280Search in Google Scholar

12. Wetz, D., Mankowski, J., and Kristiansen, M. (2005). The impact of electrode area and surface roughness on the pulsed breakdown strength water. 2005 IEEE Pulsed Power Conference, 1163-1166.10.1109/PPC.2005.300544Search in Google Scholar

13. Li, T.-C., and Chang, R.-C. (2014). Improving the performance of ITO thin films by coating PEDOT:PSS. Int. J. Precis. Eng. Manuf. Technol. 1(4), 329-334. 10.1007/s40684-014-0041-0Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics