Open Access

Synthesis of Core/Shell CuO-Zno Nanoparticles and Their Second-Harmonic Generation Performance / Kodols/Čaula Cuo-Zno Nanodaļiņu Sintēze Un To Spēja Ģenerēt Otrās Harmonikas Signālu


Cite

1. Chatterjee, K., Sarkar, S., Rao, K.J, and Paria, S. (2014). Core/shell nanoparticles in biomedical applications. Advances in Colloid and Interface Science 209, 8-39.10.1016/j.cis.2013.12.00824491963Search in Google Scholar

2. Thatai, S., Khurana, P., Boken, J., Prasad, S., and Kumar, D. (2014). Nanoparticles and core-shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchemical Journal 116, 62-76.10.1016/j.microc.2014.04.001Search in Google Scholar

3. Kim, C. K., Lee, G. J., Lee, M. K., and Rhee, C. K. (2014). A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics. Powder Technology 263, 1-6.10.1016/j.powtec.2014.04.064Search in Google Scholar

4. Wang, L., Kang, Y., Wang, Y., Zhu, B., Zhang, S., Huang, W., and Wang, S. (2012). CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection. Materials Science and Engineering: C 32(7), 2079-2085.10.1016/j.msec.2012.05.04234062699Search in Google Scholar

5. Kim, S. J., Na, C. W., Hwang, I. S., and Lee, J. H. (2012). One-pot hydrothermal synthesis of CuO-ZnO composite hollow spheres for selective H2S detection. Sensors and Actuators B: Chemical 168, 83-89.10.1016/j.snb.2012.01.045Search in Google Scholar

6. Qi, Q., Zhang, T., Zeng, Y., and Yang, H. (2009). Humidity sensing properties of KCldoped Cu-Zn/CuO-ZnO nanoparticles. Sensors and Actuators B: Chemical 137(1), 21-26.10.1016/j.snb.2008.12.005Search in Google Scholar

7. Soejima, T., Takada, K., and Ito, S. (2013). Alkaline vapor oxidation synthesis and electrocatalytic activity toward glucose oxidation of CuO/ZnO composite nanoarrays. Applied Surface Science 277, 192-200.10.1016/j.apsusc.2013.04.024Search in Google Scholar

8. Sathishkumar, P., Sweena, R., Wu, J.J., and Anandan, S. (2011). Synthesis of CuOZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution. Chemical Engineering Journal 171(1), 136-140.10.1016/j.cej.2011.03.074Search in Google Scholar

9. Liu, Z., Bai, H., Xu, S., and Sun, D. D. (2011). Hierarchical CuO/ZnO “corn-like” architecture for photocatalytic hydrogen generation. International Journal of Hydrogen Energy 36(21), 13473-13480.10.1016/j.ijhydene.2011.07.137Search in Google Scholar

10. Sharma, R. V., and Ghose, R. (2014). Synthesis of nanocrystalline CuO-ZnO mixed metal oxide powder by a homogeneous precipitation method. Ceramics International: B 40(7), 10919-10926.10.1016/j.ceramint.2014.03.089Search in Google Scholar

11. Habibi, M. H., and Karimi, B. (2014). Application of impregnation combustion method for fabrication of nanostructure CuO/ZnO composite oxide: XRD, FESEM, DRS and FTIR study. Journal of Industrial and Engineering Chemistry 20(4), 1566-1570.10.1016/j.jiec.2013.07.048Search in Google Scholar

12. Nalbant, A., Ertek, Ö., and Okur, İ. (2013). Producing CuO and ZnO composite thin films using the spin coating method on microscope glasses. Materials Science and Engineering: B. 178(6), 368-374.10.1016/j.mseb.2013.01.010Search in Google Scholar

13. Caglar, Y., Oral, D. D., Caglar, M., Ilican, S., Thomas, M. A., Wu, K., Sun, Z., and Cui, J. (2012). Synthesis and characterization of (CuO)x(ZnO)1-x composite thin films with tunable optical and electrical properties. Thin Solid Films 520(21), 6642-6647.10.1016/j.tsf.2012.06.064Search in Google Scholar

14. Pola-Albores, F., Antúnez-Flores, W., Amézaga-Madrid, P., Ríos-Valdovinos, E., Valenzuela-Zapata, M., Paraguay-Delgado, F., and Miki-Yoshida, M. (2012). Growth and microstructural study of CuO covered ZnO nanorods. Journal of Crystal Growth 351(1), 77-82.10.1016/j.jcrysgro.2012.04.027Search in Google Scholar

15. Aktsipetrov, O.A., Elyutin, P.V., Fedyanin, A.A., Nikulin, A.A., and Rubtsov, A.N. (1995). Second-harmonic generation in metal and semiconductor low-dimensional structures. Surface Science 325, 343-355.10.1016/0039-6028(94)00747-0Search in Google Scholar

16. Dadap. J. I., Shan, J., and Heinz, T.F. (2004). Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit. J. Opt. Soc. Am. B. 21(7), 1328-1347.10.1364/JOSAB.21.001328Search in Google Scholar

17. Guia, Z., Wangb, X., Liuc, J., Yanc, S., Dinga, Y., Wanga, Z., and Hu, Y. (2006). Chemical growth of ZnO nanorod arrays on textured nanoparticle nanoribbons and its secondharmonic generation performance. Journal of Solid State Chemistry 179, 1984-1989.10.1016/j.jssc.2006.03.035Search in Google Scholar

18. Prasanth, R., Van Vugt, L. K., Vanmaekelbergh, D. A. M., and Gerritsen, H. C. (2006). Resonance enhancement of optical second harmonic generation in a ZnO nanowire. Applied Physics Letters 88, 181501.10.1063/1.2200230Search in Google Scholar

19. Butet, B., Duboisset, J., Bachelier, G., Russier-Antoine, I., Benichou, E., Jonin, C., and Brevet, P. F. (2010). Optical Second Harmonic Generation of Single Metallic Nanoparticles Embedded in a Homogeneous Medium. Nano Lett. 10, 1717-1721.10.1021/nl100094920420409Search in Google Scholar

20. Zeng, Y., Hoyer, W., Liu, J., Koch, S. W., and Moloney, J.V. (2009). Classical theory for second-harmonic generation from metallic nanoparticles. Physical Review B. 79.235109.10.1103/PhysRevB.79.235109Search in Google Scholar

21. Zielinski, M., Oron, D., Chauvat, D., and Zyss, J. (2009). Second-Harmonic Generation from a Single Core/Shell Quantum Dot. Small. 5(24), 2835-2840. 10.1002/smll.20090039919842111Search in Google Scholar

22. Sattler, K., Mühlbach, J., and Recknagel, E.. (1980). Generation of metal clusters containing from 2 to 500 atoms. Phys. Rev. Lett. 45, 821-824.10.1103/PhysRevLett.45.821Search in Google Scholar

23. Allers, L. (2013). Production of Nanoparticles. United States, Mantis Deposition Limited (Thame, Oxfordshire, UK). 20130270106.Search in Google Scholar

24. Gerbreders, Vj., Sledevskis, E., Kolbjonoks, V., Teteris, J., and Gulbis, A. (2009). Second harmonic generation in selenium-metal structures. Journal of Non-Crystalline Solids 355, 1959-1961. 10.1016/j.jnoncrysol.2009.04.059Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics