Open Access

The Kinetic Study of The Hydrothermal Growth of Zno Nanorod Array Films / Zno Nanostieņu Kopu Pārklājuma Hidrotermālās Augšanas Kinētikas Izpēte


Cite

1. Tang, W., and Wang, J. (2015). Mechanism for toluene detection of flower-like ZnO sensors prepared by hydrothermal approach: Charge transfer. Sensors and Actuators B, 207, 66-73.10.1016/j.snb.2014.10.018Search in Google Scholar

2. Wei, A., Pan, L., and Huang, W. (2011). Recent progress in the ZnO nanostructure-based sensors. Materials Science and Engineering B, 176, 1409-1421.10.1016/j.mseb.2011.09.005Search in Google Scholar

3. Arya, S.K., Saha, S., Ramirez-Vick, J. E., Gupta, V., Bhansali, S., and Singh, S.P. (2012). Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Analytica Chimica Acta, 737, 1-21.10.1016/j.aca.2012.05.04822769031Search in Google Scholar

4. Pan, C.T., Chen, Y.C., Hsieh, C.C., Lin, C.H., Su, C.Y., Yen, C.K., Liu, Z.H., and Wang, W.C. (2014). Ultrasonic sensing device with ZnO piezoelectric nanorods by selectively electrospraying method. Sensors and Actuators A: Physical, 216, 318-327.10.1016/j.sna.2014.05.024Search in Google Scholar

5. Wang, X. (2012). Piezoelectric nanogenerators - Harvesting ambient mechanical energy at the nanometer scale. Nano Energy, 1, 13-24.10.1016/j.nanoen.2011.09.001Search in Google Scholar

6. Tang, Z., Koshino, H., Sato, S., Shimizu, H., and Shirai, H. (2012). Rapid thermal annealing treatment of ZnO: Al films for photovoltaic applications. Journal of Non-Crystalline Solids, 358, 2501-2503.10.1016/j.jnoncrysol.2012.03.026Search in Google Scholar

7. Guérin, V. M., Rathousky, J., and Pauporté, Th. (2012). Electrochemical design of ZnO hierarchical structures for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 102, 8-14.10.1016/j.solmat.2011.11.046Search in Google Scholar

8. Zou, X., Fan, H., Tian, Y., and Yan, S. (2013). Facile hydrothermal synthesis of large scale ZnO nanorod arrays and their growth mechanism. Materials Letters, 107, 269-272.10.1016/j.matlet.2013.06.003Search in Google Scholar

9. Zhitao, H., Sisi, L., Jinkui, C., and Yong, C. (2013). Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. Journal of Semiconductors, 34, 063002-1-16.Search in Google Scholar

10. Hong, S., Yeo, J., Manorotkul, W., Kang, H. W., Lee, J., Han, S., Rho, Y., Suh, Y. D., Sung, H. J., and Hwan Ko, S. (2013). Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate. Nanoscale, 5, 3698-3703.10.1039/c3nr34346d23494004Search in Google Scholar

11. Huang, B.R., and Lin, J.C. (2013). A facile synthesis of ZnO nanotubes and their hydrogen sensing properties. Applied Surface Science, 280, 945-949.10.1016/j.apsusc.2013.05.112Search in Google Scholar

12. Hsu, Y.F., Xi, Y.Y., Tam, K.H., Djurišić, A.B., Luo, J., Ling, C.C., Cheung, C.K., Ching, A.M., Chan, W.K., Deng, X., Beling, C.D., Fung, S., Cheah, K.W., Keung Fong, P.W., and Surya, C.C. (2008). Undoped p-Type ZnO Nanorods Synthesized by a Hydrothermal Method. Advanced Functional Materials, 18(7), 1020-1030.10.1002/adfm.200701083Search in Google Scholar

13. Lu, M.P., Lu, M.Y., and Chen, L.J. (2012). p-Type ZnO nanowires: From synthesis to nanoenergy. Nano Energy, 1, 247-258.10.1016/j.nanoen.2011.12.004Search in Google Scholar

14. Vallejo, W., Hurtado, M., and Gordillo, G. (2010). Kinetic study on Zn(O,OH)S thin films deposited by chemical bath deposition. Electrochimica Acta, 55, 5610-5616.10.1016/j.electacta.2010.04.088Search in Google Scholar

15. Singh, R.G., Singh, F., Kumar, V., and Mehra, R.M. (2011). Growth kinetics of ZnO nanocrystallites: Structural, optical and photoluminescence properties tuned by thermal annealing. Current Applied Physics, 11, 624-630.10.1016/j.cap.2010.10.013Search in Google Scholar

16. Bouhssira, N., Aida, M.S., Mosbah, A., and Cellier, J. (2010). Isothermal crystallization kinetic of ZnO thin films. Journal of Crystal Growth, 312, 3282-3286.10.1016/j.jcrysgro.2010.08.021Search in Google Scholar

17. Ko, H.H., Hsi, C.S., Wang, M.C., and Zhao, X. (2014). Crystallite growth kinetics of TiO2 surface modification with 9 mol% ZnO prepared by a coprecipitation process. Journal of Alloys and Compounds, 588, 428-439.10.1016/j.jallcom.2013.11.097Search in Google Scholar

18. Mihailova, I., Gerbreders, V., Bulanovs, A., Tamanis, E., Sledevskis, E., Ogurcovs, A., and Sarajevs, P. (2014). Controlled growth of well-aligned ZnO nanorod arrays by hydrothermal method. Proc. of SPIE Vol. 9421, 94210A1-8.Search in Google Scholar

19. Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A., and Rizzi, R. (2009). EXPO2009: Structure solution by powder data in direct and reciprocal space. Appl. Cryst. 42, 1197-1202.DOI:10.1107/S0021889809042915.10.1107/S0021889809042915Search in Google Scholar

20. Mandelkern, L. (1958). Growth and Perfection of Crystals, in R. H. Doremus, B.W. Roberts, and D. Turnbull eds. New York: John Wiley & Sons Inc., pp. 467-474.Search in Google Scholar

21. Dong, J.J., Zhen, C.Y., Hao, H.Y., Xing, J., Zhang, Z.L., Zheng, Z.Y., and Zhang, X.W. (2013). Controllable synthesis of ZnO nanostructures on the Si substrate by a hydrothermal route. Nanoscale Res. Lett. 8(1), 378.10.1186/1556-276X-8-378384749524006928Search in Google Scholar

22. Viswanatha, R., Santra, P.K., Dasgupta, C., and Sarma, D.D. (2007). Growth mechanism of nanocrystals in solution: ZnO, a case study. Phys. Rev. Lett. 98, 255501. 10.1103/PhysRevLett.98.25550117678035Search in Google Scholar

23. Feng, W., and Huang, P. (2014). A generalized mechanism of 1D ZnO rods growth in homogeneous solution. Ceramics International, 40, 8963-8967.10.1016/j.ceramint.2014.02.065Search in Google Scholar

24. Yang, Y.H., and Yang, G.W. (2010). Temperature dependence and activation energy of ZnO nanowires grown on amorphous carbon. Chemical Physics Letters, 494, 64-68. 10.1016/j.cplett.2010.05.074Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics