Open Access

An aeolian or a glaciolacustrine record? A case study from Mieļupīte, Middle Gauja Lowland, northeast Latvia


Cite

Alexanderson, H. & Henriksen, M., 2015. A short-lived aeolian event during the Early Holocene in southeastern Norway. Quaternary Geochronology 30, 175–180.10.1016/j.quageo.2015.02.014Search in Google Scholar

An, F., Ma, H., Wei, H. & Lai, Z., 2012. Distinguishing aeolian signature from lacustrine sediments of the Qaidam Basin in northeastern Qinghai-Tibetan Plateau and its palaeoclimatic implications. Aeolian Research 4, 17–30.10.1016/j.aeolia.2011.12.004Search in Google Scholar

Antoine, P., Catt, J., Lautridou, J.-P. & Sommé, J., 2003. The loess and coversands of northern France and southern England. Journal of Quaternary Science 18, 309-318.10.1002/jqs.750Search in Google Scholar

Axford, Y., Briner, J.P., Miller, G.H. & Francis, D.R., 2009. Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada. Quaternary Research 71, 142–149.10.1016/j.yqres.2008.09.006Search in Google Scholar

Balog, K., Kalmár, J., Kuti, L., Szabó, A. & Tóth, T., 2014. Sand grain mineralogy and morphology under forest and grassland/arable fields in Eastern Hungary. Agrokémia és Talajtan 63, 29–38.10.1556/agrokem.63.2014.1.4Search in Google Scholar

Björck, S. & Clemmensen, L.B., 2004. Aeolian sediment in raised bog deposits, Halland, SW Sweden: a new proxy record of Holocene winter storminess variation in southern Scandinavia. The Holocene 14, 677–688.10.1191/0959683604hl746rpSearch in Google Scholar

Blockley, S.P.E., Lane, C.S., Hardiman, M., Rasmussen, S.O., Seierstad, I.K., Steffensen, J.P., Svensson, A., Lotter, A.F., Turney, C.S.M. & Bronk Ramsey, C., 2012. Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k. Quaternary Science Reviews 36, 2–10.10.1016/j.quascirev.2011.09.017Search in Google Scholar

Blott, S.J. & Pye, K., 2012. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 59, 2071–2096.10.1111/j.1365-3091.2012.01335.xSearch in Google Scholar

Boch, R., Spötl, C. & Kramers, J., 2009. High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria. Quaternary Science Reviews 28, 2527–2538.10.1016/j.quascirev.2009.05.015Search in Google Scholar

Böse, M., Lüthgens, C., Lee, J.R. & Rose, J., 2012. Quaternary glaciations of northern Europe. Quaternary Science Reviews 44, 1–25.10.1016/j.quascirev.2012.04.017Search in Google Scholar

Brynjólfsson, S., Schomacker, A., Ingólfsson, Ó. & Keiding, J.K., 2015. Cosmogenic 36Cl exposure ages reveal a 9.3 ka BP glacier advance and the Late Weichselian-Early Holocene glacial history of the Drangajökull region, northwest Iceland. Quaternary Science Reviews 126, 140–157.10.1016/j.quascirev.2015.09.001Search in Google Scholar

Cailleux, A., 1942. Les actiones éoliennes périglaciaires en Europe. Mémoires de la Société Géologique de France 41, 1–176.Search in Google Scholar

Celiņš, I., Karušs, J., Kalińska-Nartiša, E. & Nartišs, M., 2014. Morphology, internal structure and texture of inland dunes at the Smilškalni site, Middle Gauja Lowland. [In:] V. Zelčs & M. Nartišs (Eds), Late Quaternary Terrestrial Processes, Sediments and History: From Glacial to Postglacial Environments. Excursion Guide and Abstracts of the INQUA Peribaltic Working Group Meeting and Field Excursion in Eastern and Central Latvia. University of Latvia, Rīga, 42–46.10.22364/lqtpsh.2014.06Search in Google Scholar

Crombe, P., Van Strydonck, M., Boudin, M., Van den Brande, T., Derese, C., Vandenberghe, D.A.G., Van den Haute, P., Verniers, J., Gelorini, V., Boss, J.A.A., Verbruggen, F., Antrop, M., Bats, M., Bourgeois, J., De Reu, J., De Maeyer, P., De Smedt, P., Finke, P.A., Van Meirvenne, M. & Zwertvaegher, A., 2012. Absolute dating (14C and OSL) of the formation of coversand ridges by prehistoric hunter-gatherers in NW Belgium. Radiocarbon 54, 715–726.10.1017/S0033822200047378Search in Google Scholar

Fleitmann, D., Mudelsee, M., Burns, S.J., Bradley, R.S., Kramers, J. & Matter, A., 2008. Evidence for a widespread climatic anomaly at around 9.2 ka before present. Paleoceanography 23, 1–6.10.1029/2007PA001519Search in Google Scholar

Folk, R.L., 1971. Longitudinal dunes of the nortwesten edge of the Simpson Desert, Northern Territory, Australia. 1. Geomorphology and grain size relationships. Sedimentology 16, 5–54.10.1111/j.1365-3091.1971.tb00217.xSearch in Google Scholar

Folk, R.L. & Ward, W.C., 1957. Brazos River Bar: A study in the significance of grain size parameters. Journal of Sedimentary Research 27, 3–26.10.1306/74D70646-2B21-11D7-8648000102C1865DSearch in Google Scholar

Forman, S.L. & Waters, M.R., 2016. Optically stimulated luminescence dating and the pepoling of the Americas. PaleoAmerica 2, 6–10.10.1080/20555563.2015.1136722Search in Google Scholar

Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. & Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: Part I, Experimetal design and statistical models. Archaeometry 41, 339–364.10.1111/j.1475-4754.1999.tb00987.xSearch in Google Scholar

Gilbert, E.R., De Camargo, M.G. & Sandrini-Neto, L., 2012. Rysgran: Grain size analysis, textural classifications and distribution of unconsolidated sediments. R package version 2.0 https://CRAN.R-project.org/package=rysgranSearch in Google Scholar

Gryguc, G., Kisielienė, D., Stančikaitė, M., Šeirienė, V., Skuratovič, Ž., Vaitkevičius, V., & Gaidamavičius, A., 2013. Holocene sediment record from Briaunis palaeolake, Eastern Lithuania: history of sedimentary environment and vegetation dynamics. Baltica 26, 121–136.10.5200/baltica.2013.26.13Search in Google Scholar

Hamdan, M.A., Refaat, A.A., Anwar, E.A., Shallaly, N.A. & Hamdan, M.A., 2015. Mineralogy and grain morphology of the aeolian dune sand of Toshka area, southeastern Western Desert, Egypt. Aeolian Research 17, 243–254.10.1016/j.aeolia.2015.04.006Search in Google Scholar

Heikkilä, M. & Seppä, H., 2010. Holocene climate dynamics in Latvia, eastern Baltic region: a pollen-based summer temperature reconstruction and regional comparison. Boreas 39, 705–719.10.1111/j.1502-3885.2010.00164.xSearch in Google Scholar

Helland, P.E. & Holmes, M.A., 1997. Surface textural analysis of quartz sand grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11 Ma. Palaeogeography Palaeoclimatology Palaeoecology 135, 109–121.10.1016/S0031-0182(97)00025-4Search in Google Scholar

Howari, F.M., Baghdady, A. & Goodell, P.C., 2007. Mineralogical and gemorphological characterization of sand dunes in the eastern part of United Arab Emirates using orbital remote sensing integrated with field investigations. Geomorphology 83, 67–81.10.1016/j.geomorph.2006.06.015Search in Google Scholar

Hunter, R.E., 1977. Basic types of stratification in small eolian dunes. Sedimentology 24, 361–387.10.1111/j.1365-3091.1977.tb00128.xSearch in Google Scholar

Juškevičs, V. & Skrebels, J., 2002. Quaternary Deposits. Sheets 44, 45, 54 (Alūksne, Viļaka, Valka), [In:] O.P. Āboltiņš & A. Brangulis (Eds), Geological Map of Latvia. Scale 1:200 000. Valsts ģeoloģijas dienests, Rīga.Search in Google Scholar

Kalińska, E. & Nartišs, M., 2014. Pleistocene and Holocene aeolian sediments of different location and geological history: A new insight from rounding and frosting of quartz grains. Quaternary International 328–329, 311–322.10.1016/j.quaint.2013.08.038Search in Google Scholar

Kalińska-Nartiša, E. & Nartišs, M., 2016a. The fan-like forms in the southern margin of the Mazovian Lowland area (Central Poland): a new high-resolution textural-timing study. International Journal of Earth Sciences 105, 885–903.10.1007/s00531-015-1218-7Search in Google Scholar

Kalińska-Nartiša, E. & Nartišs, M., 2016b. Sandy fan-like forms in the central-eastern Mazovian Lowland (Central Poland): textural record and chronology. Geografiska Annaler, Series A, Physical Geography 98, 111–127.10.1111/geoa.12125Search in Google Scholar

Kalińska-Nartiša, E., Soms, J., Strode, S. & Nartišs, M., 2014. Inland dune field near Daugavpils, East-Latvian Lowland. [In:] V. Zelčs & M. Nartišs (Eds.), Late Quaternary Terrestrial Processes, Sediments and History: From Glacial to Postglacial Environments. Excursion Guide and Abstracts of the INQUA Peribaltic Working Group Meeting and Field Excursion in Eastern and Central Latvia. University of Latvia, Rīga, 77–80.10.22364/lqtpsh.2014.13Search in Google Scholar

Kalińska-Nartiša, E., Nartišs, M., Thiel, C., Buylaert, J.-P. & Murray, A.S., 2015a. Late-glacial to Holocene aeolian deposition in northeastern Europe – The timing of sedimentation at the Iisaku site (NE Estonia). Quaternary International 357, 70–81.10.1016/j.quaint.2014.08.039Search in Google Scholar

Kalińska-Nartiša, E., Thiel, C., Nartišs, M., Buylaert, J.-P. & Murray, A.S., 2015b. Age and sedimentary record of inland aeolian sediments in Lithuania, NE European Sand Belt. Quaternary Research 84, 82–95.10.1016/j.yqres.2015.04.001Search in Google Scholar

Kalińska-Nartiša, E., Thiel, C., Nartišs, M., Buylaert, J.-P. & Murray, A.S., 2016. The north-eastern aeolian “European Sand Belt” as potential record of environmental changes: a case study from Eastern Latvia and Southern Estonia. Aeolian Research 22, 59–72.10.1016/j.aeolia.2016.06.002Search in Google Scholar

Kasse, C., Vandenberghe, J., van Huissteden, J., Bohncke, S.J.P. & Bos, J.A.A., 2003. Sensitivity of Weichselian fluvial systems to climate change (Nochten mine, eastern Germany). Quaternary Science Reviews 22, 2141–2156.10.1016/S0277-3791(03)00146-XSearch in Google Scholar

Käyhkö, J.A., Worsley, P., Pye, K. & Clarke, M.L., 1999. A revised chronology for aeolian activity in subarctic Fennoscandia during the Holocene. The Holocene 9, 195–205.10.1191/095968399668228352Search in Google Scholar

Kleesment, A., Kirsimäe, K., Martma, T., Shogenova, A., Urtson, K. & Shogenov, K., 2012. Linkage of diagenesis to depositional environments and stratigraphy in the northern part of the Baltic basin. Estonian Journal of Earth Sciences 61, 15–32.10.3176/earth.2012.1.02Search in Google Scholar

Kolstrup, E., 1986. Reappraisal of the upper Weichselian periglacial environment from Danish frost wedge casts. Palaeogeography Palaeoclimatology Palaeoecology 56, 237–249.10.1016/0031-0182(86)90096-9Search in Google Scholar

Kolstrup, E., 2007. Lateglacial older and younger cover-sand in northwest Europe: chronology and relation to climate and vegetation. Boreas 36, 65–75.10.1080/03009480600827280Search in Google Scholar

Krajcarz, M.T., Cyrek, K., Krajcarz, M., Mroczek, P., Sudoł, M., Szymanek, M., Tomek, T., & Madeyska, T., 2016. Loess in a cave: Lithostratigraphic and correlative value of loess and loess-like layers in caves from the Kraków-Czestochowa Upland (Poland). Quaternary International 399, 13–30.10.1016/j.quaint.2015.08.069Search in Google Scholar

Krinsley, D.H. & Doornkamp, J.C., 1973. Atlas of Quartz Sand Surface Textures, Cambridge University Press, Oxford, 93 pp.Search in Google Scholar

Kuenen, P.H. & Peredok, W.G., 1962. Experimental Abrasion 5. Frosting and Defrosting of Quartz Grains. Journal of Geology 70, 648–658.10.1086/626864Search in Google Scholar

Küster, M., Fülling, A., Kaiser, K. & Ulrich, J., 2014. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response. Geomorphology 211, 64–76.10.1016/j.geomorph.2013.12.030Search in Google Scholar

Lang, B., Bedford, A., Brooks, S., Jones, R., Richardson, N., Birks, H. & Marshall, J., 2010. Early-Holocene temperature variability inferred from chironomid assemblages at Hawes Water, northwest England. The Holocene 20, 943–954.10.1177/0959683610366157Search in Google Scholar

Lord, T., Thorp, J. & Wilson, P., 2015. A wild boar dominated ungulate assemblage from an early Holocene natural pit fall trap: Cave shaft sediments in north-west England associated with the 9.3 ka BP cold event. The Holocene 147–153.10.1177/0959683615596837Search in Google Scholar

Mahaney, W.C., 2002. Atlas of sand grain surface, textures and applications. Oxford University Press, Oxford, 256 pp.Search in Google Scholar

Mahaney, W.C. & Kalm, V., 1995. Scanning electron microscopy of Pleistocene tills in Estonia. Boreas 24, 13–19.10.1111/j.1502-3885.1995.tb00624.xSearch in Google Scholar

Mahaney, W.C. & Kalm, V., 2000. Comparative scanning electron microscopy study of oriented till blocks, glacial grains and Devonian sands in Estonia and Latvia. Boreas 29, 35–51.10.1080/030094800424303Search in Google Scholar

Mahaney, W.C., Stewart, A. & Kalm, V., 2001. Quantification of SEM microtextures useful in sedimentary environmental discrimination. Boreas 30, 165–171.10.1080/030094801750203170Search in Google Scholar

Margielewski, W., Krąpiec, M., Jankowski, L., Urban, J. & Zernitskaya, V., 2015. Impact of aeolian processes on peat accumulation: Late Glacial e Holocene history of the Hamernia peat bog (Roztocze region, south-eastern Poland). Quaternary International 386, 212–225.10.1016/j.quaint.2015.07.016Search in Google Scholar

Marks, L., 2012. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44, 81–88.10.1016/j.quascirev.2010.08.008Search in Google Scholar

Matthews, J.A. & Seppälä, M., 2013. Holocene environmental change in subarctic aeolian dune fields: The chronology of sand dune re-activation events in relation to forest fires, palaeosol development and climatic variations in Finnish Lapland. The Holocene 24, 149–164.10.1177/0959683613515733Search in Google Scholar

Mountney, N.P., 2012. A stratigraphic model to account for complexity in aeolian dune and interdune successions. Sedimentology 59, 964–989.10.1111/j.1365-3091.2011.01287.xSearch in Google Scholar

Muhs, D.R., 2004. Mineralogical maturity in dunefields of North America, Africa and Australia. Geomorphology 59, 247–269.10.1016/j.geomorph.2003.07.020Search in Google Scholar

Murray, A.S. & Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73.10.1016/S1350-4487(99)00253-XSearch in Google Scholar

Mycielska-Dowgiałło, E. & Ludwikowska-Kędzia, M., 2011. Alternative interpretations of grain-size data from Quaternary deposits. Geologos 17, 189–203.10.2478/v10118-011-0010-9Search in Google Scholar

Mycielska-Dowgiałło, E. & Woronko, B., 1998. Analiza obtoczenia i zmatowienia powierzchni ziarn kwarcowych frakcji piaszczystej i jej wartość interpretacyjna [Rounding and frosting analysis of quartz sand-grain surfaces and their interpretative significance]. Przegląd Geologiczny 46, 1275–1281.Search in Google Scholar

Narayana, A.C., Mohan, R. & Mishra, R., 2010. Morphology and surface textures of quartz grains from freshwater lakes of McLeod Island, Larsemann Hills, East Antarctica. Current Science 99, 1420–1424.Search in Google Scholar

Nartišs, M., 2014. Ice meltwater lake of Northern Vidzeme and Middle Gauja Lowlands during the Late Weichselian deglaciation. Doctoral thesis. University of Latvia, Rīga, 142 pp.Search in Google Scholar

Nartišs, M., Celiņš, I., Zelčs, V. & Dauškans, M., 2009. History of the development and palaeogeography of ice-dammed lakes and inland dunes at Seda sandy plain, North Western Vidzeme, Latvia. [In:] V. Kalm, L. Lauments & T. Hang (Eds), Extent and Timing of the Weichselian Glaciation Southeast of the Baltic Sea: Abstracts & Guidebook. The INQUA Peribaltic Working Group Field Symposium in Southern Estonia and Northern Latvia. Ülikooli Kirjastus, Tartu, 79–81.Search in Google Scholar

Pettijohn, F.J., Potter, P.E. & Siever, R., 1972. Sand and Sandstones. Springer-Verlag, Cambridge, 618 pp.10.1007/978-1-4615-9974-6Search in Google Scholar

Rasmussen, S.O., Vinther, B.M., Clausen, H.B. & Andersen, K.K., 2007. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26, 1907–1914.10.1016/j.quascirev.2007.06.015Search in Google Scholar

Refaat, A.A. & Hamdan, M.A., 2015. Mineralogy and grain morphology of the aeolian dune sand of Toshka area, southeastern Western Desert, Egypt. Aeolian Research 17, 243–254.10.1016/j.aeolia.2015.04.006Search in Google Scholar

Rinterknecht, V.R., Clark, P.U., Raisbeck, G.M., Yiou, F., Bitinas, A., Brook, E.J., Marks, L., Zelcs, V., Lunkka, J.-P., Pavlovskaya, I.E., Piotrowski, J.A. & Raukas, A., 2006. The last deglaciation of the southeastern sector of the Scandinavian ice sheet. Science 311, 1449–52.10.1126/science.112070216527977Search in Google Scholar

Ritchot, G. & Cailleux, A., 1971. Taxonomie, géomorphologie et morphoscopie de sables au Québec méridional. Cahiers de géographie du Québec 15, 423.10.7202/020980arSearch in Google Scholar

Rodríguez-López, J.P., Meléndez, N., de Boer, P.L. & Soria, A.R., 2008. Aeolian sand sea development along the mid-Cretaceous western Tethyan margin (Spain): erg sedimentology and palaeoclimate implications. Sedimentology 55, 1253–1292.10.1111/j.1365-3091.2007.00945.xSearch in Google Scholar

Román-Sierra, J., Muñoz-Pérez, J.J. & Navarro-Pons, M., 2013. Influence of sieving time on the efficiency and accuracy of grain-size analysis of beach and dune sands. Sedimentology 60, 1484–1497.10.1111/sed.12040Search in Google Scholar

Roskosch, J., Tsukamoto, S., Meinsen, J., Frechen, M. & Winsemann, J., 2012. Luminescence dating of an Upper Pleistocene alluvial fan and aeolian sandsheet complex: The Senne in the Münsterland Embayment, NW Germany. Quaternary Geochronology 10, 94–101.10.1016/j.quageo.2012.02.012Search in Google Scholar

Saarse, L., 2015. Cyclic sedimentation pattern in Lake Veetka, southeast Estonia: A case study. Geologos 21, 59–69.10.1515/logos-2015-0003Search in Google Scholar

Stivrins, N., Kalnina, L., Veski, S. & Zeimule, S., 2014. Local and regional Holocene vegetation dynamics at two sites in eastern Latvia. Boreal Environment Research 19, 310–322.Search in Google Scholar

Stivrins, N., Kolaczek, P., Reitalu, T., Seppä, H. & Veski, S., 2015. Phytoplankton response to the environmental and climatic variability in a temperate lake over the last 14,500 years in eastern Latvia. Journal of Paleolimnology 54, 103–119.10.1007/s10933-015-9840-8Search in Google Scholar

Sweet, D.E. & Soreghan, G.S., 2010. Application of Quartz Sand Microtextural Analysis to Infer Cold-Climate Weathering for the Equatorial Fountain Formation (Pennsylvanian-Permian, Colorado, U.S.A.). Journal of Sedimentary Research 80, 666–677.10.2110/jsr.2010.061Search in Google Scholar

Tate, S.E., Greene, R.S.B., Scott, K.M. & McQueen, K.G., 2007. Recognition and characterisation of the aeolian component in soils in the Girilambone Region, north western New South Wales, Australia. Catena 69, 122–133.10.1016/j.catena.2006.05.009Search in Google Scholar

Tolksdorf, J.F. & Kaiser, K., 2012. Holocene aeolian dynamics in the European sand-belt as indicated by geo-chronological data. Boreas 41, 408–421.10.1111/j.1502-3885.2012.00247.xSearch in Google Scholar

Vandenberghe, D.A.G., Derese, C., Kasse, C. & van den Haute, P., 2013. Late Weichselian (fluvio-)aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high-resolution dating study using optically stimulated luminescence. Quaternary Science Reviews 68, 96–113.10.1016/j.quascirev.2013.02.009Search in Google Scholar

Velichko, A.A. & Timirieva, S.N., 1995. Morphoscopy and morphometry of quartz grains from loess and buried soil layers. GeoJournal 36, 143–149.10.1007/BF00813159Search in Google Scholar

Veski, S., Seppä, H., & Ojala, A.E.K., 2004. Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology 32, 681–684.10.1130/G20683.1Search in Google Scholar

Veski, S., Seppä, H., Stančikaitė, M., Zernitskaya, V., Reitalu, T., Gryguc, G., Heinsalu, A., Stivrins, N., Amon, L., Vassiljev, J. & Heiri, O., 2015. Quantitative summer and winter temperature reconstructions from pollen and chironomid data between 15 and 8 ka BP in the Baltic and Belarus area. Quaternary International 388, 4–11.10.1016/j.quaint.2014.10.059Search in Google Scholar

Visher, G.S., 1969. Grain size distribution and depositional processes. Journal of Sedimentary Research 39, 1074–1106.10.1306/74D71D9D-2B21-11D7-8648000102C1865DSearch in Google Scholar

Vos, K., Vandenberghe, N. & Elsen, J., 2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Science Reviews 128, 93–104.10.1016/j.earscirev.2013.10.013Search in Google Scholar

Woronko, B., Zieliński, P. & Sokołowski, R.J., 2015. Climate evolution during the Pleniglacial and Late Glacial as recorded in quartz grain morphoscopy of flu-vial to aeolian successions of the European Sand Belt. Geologos 21, 89–103.10.1515/logos-2015-0005Search in Google Scholar

Young, N.E., Briner, J.P., Rood, D.H., Finkel, R.C., Corbett, L.B. & Bierman, P.R., 2013. Age of the Fjord Stade moraines in the Disko Bugt region, western Greenland, and the 9.3 and 8.2 ka cooling events. Quaternary Science Reviews 60, 76–90.10.1016/j.quascirev.2012.09.028Search in Google Scholar

Yu, S.-Y., Colman, S.M., Lowell, T.V., Milne, G.A., Fisher, T.G., Breckenridge, A., Boyd, M. & Teller, J.T., 2010. Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago. Science 328 (5983), 1262–1266.Search in Google Scholar

Zeeberg, J., 1998. The European sand belt in eastern Europe – and comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27, 127–139.10.1111/j.1502-3885.1998.tb00873.xSearch in Google Scholar

Zelčs, V. & Markots, A., 2004. Deglaciation history of Latvia. [In:] J. Ehlers & P.L. Gibbard (Eds), Quaternary Glaciations Extent and Chronology Part I: Europe, Developments in Quaternary Science. Elsevier, Amsterdam, 225–243.10.1016/S1571-0866(04)80074-5Search in Google Scholar

Zelčs, V., Markots, A., Nartišs, M. & Saks, T., 2011. Pleistocene Glaciations in Latvia. [In:] J. Ehlers, P.L. Gib-bard & P.D. Hughes (Eds.): Quaternary Glaciations–Extent and Chronology, Developments in Quaternary Science. Elsevier, Amsterdam, 221–229.10.1016/B978-0-444-53447-7.00018-0Search in Google Scholar

Zhang, P., Song, C., Yang, Y., Gao, H., Zhang, H., Liu, W.M., Pan, M.H., Liu, P., Hu, S.H. & Xia, W.M., 2008. The significance and establishment of discriminant function with grain size of stable lacustrine sediment and eolian loess. Acta Sedimentologica Sinica 26, 501–507.Search in Google Scholar

Zhang, X., Li, Z., Li, P., Cheng, S., Zhang, Y., Tang, S. & Wang, T., 2015. A model to study the grain size components of the sediment deposited in aeolian – fluvial interplay erosion watershed. Sedimentary Geology 330, 132–140.10.1016/j.sedgeo.2015.10.002Search in Google Scholar

Zhang, Z. & Dong, Z., 2015. Grain size characteristics in the Hexi Corridor Desert. Aeolian Research 18, 55–67.10.1016/j.aeolia.2015.05.006Search in Google Scholar

Zieliński, P., Sokołowski, R.J., Woronko, B., Fedorowicz, S., Jankowski, M. & Standzikowski, K., 2016. Sandy deposition in a small dry valley in the periglacial zone of the Last Glacial Maxiumum: A case study from the Józefów site, SE Poland. Quaternary International 399, 58–71.10.1016/j.quaint.2015.08.089Search in Google Scholar

Zieliński, P., Sokołowski, R.J., Woronko, B., Jankowski, M., Fedorowicz, S., Zaleski, I., Molodkov, A. & Weckwerth, P., 2015. The depositional conditions of the fluvio-aeolian succession during the last climate minimum based on the examples from Poland and NW Ukraine. Quaternary International 386, 30–41.10.1016/j.quaint.2014.08.013Search in Google Scholar

eISSN:
2080-6574
Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Geosciences, Geophysics, Geology and Mineralogy, other