Open Access

Bayesian Predictive Inference of a Proportion Under a Twofold Small-Area Model


Cite

We extend the twofold small-area model of Stukel and Rao (1997; 1999) to accommodate binary data. An example is the Third International Mathematics and Science Study (TIMSS), in which pass-fail data for mathematics of students from US schools (clusters) are available at the third grade by regions and communities (small areas). We compare the finite population proportions of these small areas. We present a hierarchical Bayesian model in which the firststage binary responses have independent Bernoulli distributions, and each subsequent stage is modeled using a beta distribution, which is parameterized by its mean and a correlation coefficient. This twofold small-area model has an intracluster correlation at the first stage and an intercluster correlation at the second stage. The final-stage mean and all correlations are assumed to be noninformative independent random variables. We show how to infer the finite population proportion of each area. We have applied our models to synthetic TIMSS data to show that the twofold model is preferred over a onefold small-area model that ignores the clustering within areas. We further compare these models using a simulation study, which shows that the intracluster correlation is particularly important.

eISSN:
2001-7367
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Probability and Statistics