Cite

Aeschbach-Hertig, W., Gleeson, T., 2012. Regional strategies for the accelerating global problem of groundwater depletion. Nature Geosci., 5, 853–861.10.1038/ngeo1617Search in Google Scholar

Allan, R.P., Soden. B.J., 2008. Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481–1481.10.1126/science.1160787Search in Google Scholar

Allan, P., Soden, B.J., John, V.O., Ingram, W., Good, P., 2010. Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, 7 p.10.1088/1748-9326/5/2/025205Open DOISearch in Google Scholar

Allen R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration; Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy.Search in Google Scholar

ASCE, 2005. The ASCE Standardized Reference Evapotranspiration Equation. Environmental and Water Resources Institute of ASCE, Final Report. American Society of Civil Engineers, Reston, VA, USA.Search in Google Scholar

Assefa, K.A., Woodbury, A.D., 2013. Transient, spatially varied groundwater recharge modeling. Water Resour. Res., 49, 4593–4606.10.1002/wrcr.20332Search in Google Scholar

Batalha, M.S., Bezerra, C.R., Jacques, D., Barbosa, M.C., Pontedeiro, E.M., van Genuchten, M.Th., 2012. Multicomponent transport predictions of 226Ra in soil following the use of phosphogypsum. In: Proc. 4th Int. Conf. on Engineering for Waste and Biomass Valorization, WASTENG, Porto, Portugal, 6 p.Search in Google Scholar

Carsel R.F., Parrish. R.S., 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res., 4, 755–769.10.1029/WR024i005p00755Open DOISearch in Google Scholar

Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A., 1983. Graphical Methods for Data Analysis. Wadsworth & Brooks/Cole.Search in Google Scholar

Ephrath, J.E., Goudriaan, J., Marani, A., 1996. Evaluation and calibration of three models for daily cycle of air temperature, radiation, wind speed and relative humidity by equations from daily characteristics. Agric. Syst., 51, 4, 377–393.10.1016/0308-521X(95)00068-GOpen DOISearch in Google Scholar

Gee, G.W., Hillel, D., 1988. Groundwater recharge in arid regions: Review and critique of estimation methods. Hydrol. Process., 2, 255–266. DOI: 10.1002/hyp.3360020306.10.1002/hyp.3360020306Open DOISearch in Google Scholar

Gleeson, T., Befus, K.M., Jasechko, S., Luijendijk, E., Cardenas, M.B., 2015. The global volume and distribution of modern groundwater. Nature Geosci., 9, 161–167.10.1038/ngeo2590Search in Google Scholar

Gorelick, S.M., Zheng, C., 2015. Global change and the groundwater management challenge. Water Resour. Res., 51, 3031–3051, DOI: 10.1002/2014WR016825.10.1002/2014WR016825Open DOISearch in Google Scholar

Harman, C.J., Rao, P.S.C., Basu, N.B., McGrath, G.S., Kumar, P., Sivapalan, M., 2011. Climate, soil, and vegetation controls on the temporal variability of vadose zone transport. Water Resour. Res., 47, W00J1310.1029/2010WR010194Search in Google Scholar

INMET, 2015. Instituto Nacional de Meteorologia, Ministério da Agricultura, Pecuária e Abastecimento <http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep>, Brazil.Search in Google Scholar

Jasechko, S., Taylor, R.G., 2015. Intensive rainfall recharges tropical groundwaters Environ. Res. Lett., 10, 124015.10.1088/1748-9326/10/12/124015Search in Google Scholar

Jimenez-Martinez, J., Skaggs, T.H., van Genuchten, M.Th., Candela, L., 2009. A root zone modelling approach to estimating groundwater recharge from irrigated areas. J. Hydrol., 367, 138–149.10.1016/j.jhydrol.2009.01.002Search in Google Scholar

Jyrkama, M.I., Sykes, J.F., 2007. The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). J. Hydrol., 338, 237–250.10.1016/j.jhydrol.2007.02.036Search in Google Scholar

Jyrkama, M.I., Sykes, J.F., Normani, S.D., 2002. Recharge estimation for transient ground water modeling. Ground Water, 40, 638–648.10.1111/j.1745-6584.2002.tb02550.xOpen DOISearch in Google Scholar

Katul, G.G., Parlange, M.B., 1992. A Penman-Brutsaert model for wet surface evaporation. Water Resour. Res., 28, 121–126.10.1029/91WR02324Open DOISearch in Google Scholar

Kim, J.H., Jackson, R.B., 2012. A global analysis of groundwater recharge for vegetation, climate, and soils. Vadose Zone J., 11, 1.10.2136/vzj2011.0021RAOpen DOISearch in Google Scholar

Kimball, B.A., Bellamy, L.A., 1986. Generation of diurnal solar radiation, temperature, and humidity patterns. Energy Agric., 5, 185–197.10.1016/0167-5826(86)90018-5Open DOISearch in Google Scholar

Kuntz, D., Grathwohl, P., 2009. Comparison of steady-state and transient flow conditions on reactive transport of contaminants in the vadose zone. J. Hydrol., 369, 225–233.10.1016/j.jhydrol.2009.02.006Search in Google Scholar

Leterme, B., Mallants, D., Jacques, D., 2012. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D. Hydrol. Earth Syst. Sci., 16, 2485–2497.10.5194/hess-16-2485-2012Open DOISearch in Google Scholar

Marsaglia, G.W., Tsang, W., Wang, J., 2003. Evaluating Kolmogorov's distribution. J. Stat. Softw., 8, 18.10.18637/jss.v008.i18Search in Google Scholar

Marshall, J.D., Shimada, B.W., Jaffe, P.R., 2000. Effect of temporal variability in infiltration on contaminant transport in the unsaturated zone. J. Contam. Hydrol., 46, 151–161.10.1016/S0169-7722(00)00112-1Open DOISearch in Google Scholar

Maxwell, R.M., Kollet, S.J., 2008. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nature Geosci., 1, 665–669.10.1038/ngeo315Search in Google Scholar

Mileham, L., Taylor, R.G., Todd, M., Tindimugaya, C., Thompson, J., 2009. Climate change impacts on the terrestrial hydrology of a humid, equatorial catchment: sensitivity of projections to rainfall intensity. Hydrol. Sci. J., 54, 727–738.10.1623/hysj.54.4.727Search in Google Scholar

Neto, D.C., Chang, H.K., van Genuchten, M.Th., 2016. A mathematical view of water table fluctuations in a shallow aquifer in Brazil. Ground Water, 54, 82–91.10.1111/gwat.1232925818697Search in Google Scholar

Ngatcha, B.N., Mudry, J., Sarrot, R.J., 2007. Groundwater recharge from rainfall in the southern border of Lake Chad in Cameroon. World Appl. Sci. J., 2, 125–131.Search in Google Scholar

Owor, M., Taylor, R.G., Tindimugaya, C., Mwesigwa, D., 2009. Rainfall intensity and groundwater recharge: Empirical evidence from the Upper Nile Basin. Environ. Res. Lett., 4, 035009.10.1088/1748-9326/4/3/035009Search in Google Scholar

Phillips, F.M., 1994. Environmental tracers for water movement in desert soils of the American Southwest. Soil Sci. Soc. Am. J., 58, 15–24.10.2136/sssaj1994.03615995005800010003xOpen DOISearch in Google Scholar

Portmann, F.T., Döll, P., Eisner, S., Flörke, M., 2013. Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ. Res. Lett. 8, 024023.10.1088/1748-9326/8/2/024023Search in Google Scholar

Saifadeen, A., Gladnyeva, R., 2012. Modeling of solute transport in the unsaturated zone using HYDRUS-1D. TVVR 12/5020, Water Resources Engineering, Lund University, Sweden.Search in Google Scholar

Santoni, C.S., Jobbágy, E.G., Contreras, S., 2010. Vadose zone transport in dry forests of central Argentina: Role of land use. Water Resour. Res., 46, W10541.10.1029/2009WR008784Search in Google Scholar

Scanlon, B.R., Healy, R.W., Cook, P.G., 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J., 10, 18–39.10.1007/s10040-001-0176-2Search in Google Scholar

Shah, T., Molden, D., Sakthivadivel, R., Seckler, D., 2000. The global groundwater situation: Overview of opportunities and challenges. IWMI Books, Rep. H025885. Int. Water Manage. Ins., Colombo, Sri Lanka.10.5337/2011.0051Search in Google Scholar

Shiklomanov, I.A., 1997. Comprehensive assessment of the freshwater resources of the world. World Meteor. Org., Stockholm, Sweden.Search in Google Scholar

Shiklomanov, I.A., Rodda, J.C., 2003. World Water Resources at the Beginning of the Twenty-First Century. Cambridge University Press, Cambridge, UK.Search in Google Scholar

Šimůnek, J., Šejna, M., Saito, H., Sakai, M., van Genuchten, M.Th., 2013. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 4.17. Dep. of Environmental Sciences, University of California, Riverside, California, USA.Search in Google Scholar

Šimůnek, J., van Genuchten, M.Th., Šejna, M., 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J., 15, DOI: 10.2136/vzj2016.04.0033.10.2136/vzj2016.04.0033Open DOISearch in Google Scholar

Soares, P.S.M., Souza, V.P., Possa, M.V., Soares. A.B., 2012. Projeto Cooperativo para Realização de Experimento de Avaliação de Desempenho de Cobertura Seca para Mitigação de Drenagem Ácida de Mina em Escala Piloto Centro de Tecnologia Mineral (CETEM). Relatório Final de Projeto Elaborado Para a Carbonífera Criciúma S.A., Rio de Janeiro, Brazil.Search in Google Scholar

Taylor, R.G., Todd, M.C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., MacDonald, A.M., 2013. Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nature Climate Change, 3, 374–378.10.1038/nclimate1731Search in Google Scholar

van Bavel, C.H.M., 1966. Potential evaporation: The combination concept and its experimental verification. Water Resour. Res., 2, 3, 455–467.10.1029/WR002i003p00455Open DOISearch in Google Scholar

van Bavel, C.H.M., Hillel, D.I., 1976. Calculating potential and actual evaporation from a bare soil surface by simulation of concurrent flow of water and heat. Agric. Meteorol., 17, 453–476.10.1016/0002-1571(76)90022-4Search in Google Scholar

van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44 892–898.10.2136/sssaj1980.03615995004400050002xOpen DOISearch in Google Scholar

Veldkamp, T.I.E., Wada, Y., Aerts, J.C.J.H., Ward, P.J., 2016. Towards a global water scarcity risk assessment framework: Incorporation of probability distributions and hydro-climatic variability. Environ. Res. Lett., 11, 024006.10.1088/1748-9326/11/2/024006Open DOISearch in Google Scholar

Vero, S.E., Ibrahim, T.G., Creamer, R.E., Grandt, J., Healy, M.G., Henry, T., Kramers, G., Richards, K.G., Fenton, O., 2014. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates. J. Contam. Hydrol., 170, 53–67.10.1016/j.jconhyd.2014.10.00225444116Search in Google Scholar

Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global water resources: Vulnerability from climate change and population growth. Science, 289, 284–288.10.1126/science.289.5477.28410894773Search in Google Scholar

Wada, Y., Wisser, D., Bierkens, M.F.P., 2014. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn., 5, 15–40.10.5194/esd-5-15-2014Search in Google Scholar

Wang, P., Quinlan, P., Tartakovsky, D.M., 2009. Effects of spatio-temporal variability of precipitation on contaminant migration in the vadose zone. Geophys. Res. Lett., 36, L12404.10.1029/2009GL038347Open DOISearch in Google Scholar

Wann, M., Yan, D., Gold, H.J., 1985. Evaluation and calibration of three models for daily cycle of air temperature. Agric. Forest Meteorol., 34, 121–128.10.1016/0168-1923(85)90013-9Search in Google Scholar

Yin, Y., Sykes, J.F., Normani, S.D., 2015. Impacts of spatial and temporal recharge on field-scale contaminant transport model calibration. J. Hydrol., 527, 77–87.10.1016/j.jhydrol.2015.04.040Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other