Cite

Arya, L.M. 2002. Wind and hot-air methods. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. Physical Methods. Soil Sci. Soc. Am., Madison, WI, pp. 916–920.Search in Google Scholar

Assouline, S., Tessier D., Bruand, A., 1998. A conceptual model of the soil water retention curve. Water Resour. Res., 34, 2, 223–231.10.1029/97WR03039Open DOISearch in Google Scholar

Becher, H.H., 1970. Ein Verfahren zur Messung der ungesattigten Wasserleitfahigkeit. Z. Pflanzenernaehrung u. Bodenkd., 128, 1–12. (In German.)10.1002/jpln.19711280102Search in Google Scholar

Bertuzzi, P., Voltz, M., 1997. The Wind method: A standard laboratory method adopted by the French INRA laboratories. In: Proc. Workshop The use of pedotransfer in soil hydrology research, Orleans, France, pp. 51–53.Search in Google Scholar

Bittelli, M., Flury, M., 2009. Errors in water retention curves determined with pressure plates. Soil Sci. Soc. Am. J., 73, 1453–1460. DOI: 10.2136/sssaj2008.0082.10.2136/sssaj2008.0082Open DOISearch in Google Scholar

Bitterlich, S., Durner, W., Iden, S.C., Knabner, P., 2004. Inverse estimation of the unsaturated soil hydraulic properties from column outflow experiments using free-form parameterizations. Vadose Zone J., 3, 971–981.10.2136/vzj2004.0971Search in Google Scholar

Brooks, R.H., Corey, A.T., 1964. Hydraulic properties of porous media. Hydrology paper 3. Colorado State Univ., Fort Collins, CO.Search in Google Scholar

Dane, J.H., Hopmans, J.W., 2002. Soil water retention and storage. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. Physical Methods. Soil Sci. Soc. Am., Madison, WI, pp. 675–720.10.2136/sssabookser5.4Search in Google Scholar

Dane, J.H., Topp, G.C. (Eds.), 2002. Methods of Soil Analysis. Part 4. Physical Methods. Soil Sci. Soc. Am., Madison, WI.10.2136/sssabookser5.4Search in Google Scholar

Durner, W., 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res., 32, 9, 211–223.10.1029/93WR02676Open DOISearch in Google Scholar

Fredlund, D.G., Xing, A., 1994. Equations for the soil water characteristic curve. Can. Geotechn. J., 31, 521–532.10.1139/t94-061Search in Google Scholar

Gardner, W.R., Miklich, F.J., 1962. Unsaturated conductivity and diffusivity measurements by a constant flux method. Soil Sci., 93, 271–274.10.1097/00010694-196204000-00008Open DOISearch in Google Scholar

Gubiani, P.I., Reichert, J.M., Campbell, C., Reinert, D.J., Gelain, N.S., 2012. Assessing errors and accuracy in dew-point potentiometer and pressure plate extractor measurements. Soil Sci. Soc. Am. J., 77, 1, 19–24. DOI: 10.2136/sssaj2012.0024.10.2136/sssaj2012.0024Open DOISearch in Google Scholar

Halbertsma, J., 1996. Wind’s evaporation method; determination of the water retention characteristics and unsaturated hydraulic conductivity of soil samples. Possibilities, advantages and disadvantages. In: European Workshop on Advanced Methods to Determine Hydraulic Properties of Soils, Thurnau, Germany, 10–12 June 1996. Department of Hydrology, University of Bayreuth, 107 p.Search in Google Scholar

Hopmans, J.W., Šimůnek, J., Romano, N., Durner, W., 2002. Inverse modeling of transient water flow. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. Physical Methods. SSSA, Madison, WI, pp. 963–1008,Search in Google Scholar

Iden, S.C., Durner, W., 2008. Free-form estimation of soil hydraulic properties using Wind's method. Europ. J. Soil Sci., 59, 6, 1228–1240. DOI:10.1111/j.1365-2389.2008.01068.x.10.1111/j.1365-2389.2008.01068.xOpen DOISearch in Google Scholar

Iden, S.C., Durner, W., 2014. Comment to “Simple consistent models for water retention and hydraulic conductivity in the complete moisture range” by A. Peters. Water Resour. Res., 50, 7530–7534.10.1002/2014WR015937Open DOISearch in Google Scholar

Kastanek, F.J., Nielsen, D.R., 2001. Description of soil water characteristics using cubic spline interpolation. Soil Sci. Soc. Am. J., 65, 279–283.10.2136/sssaj2001.652279xOpen DOISearch in Google Scholar

Klute, A. (Ed.), 1986. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. Am. Soc. Agron., Madison, WI, pp. 1025–1054.10.2136/sssabookser5.1.2edSearch in Google Scholar

Klute, A., Dirksen, C., 1986. Hydraulic conductivity and diffusivity: laboratory methods. In: Klute, A. (Ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. Agron. Monogr. 9. ASA, Madison, WI, pp. 687–734.10.2136/sssabookser5.1.2ed.c28Search in Google Scholar

Kool, J.B., Parker J.C., Genuchten, M.Th., 1987. Parameter estimation for unsaturated flow and transport models, a review. J. Hydrol., 91, 255–293.10.1016/0022-1694(87)90207-1Open DOISearch in Google Scholar

Kosugi, K., 1996. Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour. Res., 32, 2697–2703.10.1029/96WR01776Open DOISearch in Google Scholar

Looney, B.B., Falta, R.W. (Eds.), 2000. Vadose Zone Science and Technology Solutions. Battelle Press, Columbus, OH, 1540 p.Search in Google Scholar

Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513–522.10.1029/WR012i003p00513Open DOISearch in Google Scholar

Nimmo, J.R., Perkins, K.S., Lewis, A.M., 2002. Steady-state centrifuge. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. Physical Methods. SSSA Book Ser. 5, SSSA, Madison, WI, pp. 903–916.Search in Google Scholar

Pertassek, T., Peters, A., Durner, W., 2015. HYPROP-FIT Software User’s Manual, V.3.0. UMS GmbH, Munich, Germany, 66 p.Search in Google Scholar

Peters, A., 2013. Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour. Res., 49, 6765–6780.10.1002/wrcr.20548Search in Google Scholar

Peters, A., 2014. Reply to comment by S. Iden and W. Durner on Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour. Res., 50, 7535–7539.10.1002/2014WR016107Open DOISearch in Google Scholar

Peters, A., Durner, W., 2008. Simplified evaporation method for determining soil hydraulic properties. J. Hydrol., 356, 147–162.10.1016/j.jhydrol.2008.04.016Search in Google Scholar

Peters, A., Iden, S.C., Durner, W., 2015. Revisiting the simplified evaporation method: Identification of hydraulic functions considering vapor, film and corner flow. Journal of Hydrology, 527, 531–542.10.1016/j.jhydrol.2015.05.020Search in Google Scholar

Plagge, R., 1991. Bestimmung der ungesättigten Wasserleitfähigkeit im Boden. Ph.D. diss. Dep. Landschaftsentwicklung, Techn. Univ. Berlin, Berlin. (In German.)Search in Google Scholar

Priesack, E., Durner, W., 2006. Closed-form expression for the multimodal unsaturated conductivity function. Vadose Zone J., 5, 121–124. DOI:10.2136/vzj2005.0066.10.2136/vzj2005.0066Open DOISearch in Google Scholar

Sakaki, T., Limsuwat, A., Cihan, A., Frippiat, C., Illangasekare, T.H., 2012. Water retention in a coarse soil pocket under wetting and drainage cycles. Vadose Zone J., 11, 1. DOI: 10.2136/vzj2011.0028.10.2136/vzj2011.0028Open DOISearch in Google Scholar

Scanlon, B.R., Andraski, B.J., Bilskie, J., 2002. Miscellaneous methods for measuring matric or water potential. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. Physical Methods, Chapter 3.3. Soil Sci. Soc. Am., Madison, WI, pp. 642–670.Search in Google Scholar

Schelle, H., Iden, S.C., Peters, A., Durner, W., 2010. Analysis of the agreement of soil hydraulic properties obtained from multistep-outflow and evaporation methods. Vadose Zone J., 9, 1080–1091. DOI: 10.2136/vzj2010.0050.10.2136/vzj2010.0050Open DOISearch in Google Scholar

Schindler, U., von Unold, G., Durner, W., Müller, L., 2010a. Evaporation method for measuring unsaturated hydraulic properties of soils: extending the range. Soil Sci. Soc. Am. J., 74, 1071–1083. DOI: 10.2136/sssaj2008.0358.10.2136/sssaj2008.0358Open DOISearch in Google Scholar

Schindler, U., Durner, W., von Unold, G., Müller, L., Wieland, R., 2010b. The evaporation method: extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup. J. Plant Nutr. & Soil Sci., 173, 563–572. DOI: 10.1002/jpln.200900201.10.1002/jpln.200900201Open DOISearch in Google Scholar

Šimůnek, J., Wang, D., Shouse, P.J., van Genuchten, M.Th., 1998a. Analysis of field tension disc infiltrometer data by parameter estimation. Int. Agrophysics, 12,167–180.Search in Google Scholar

Šimůnek, J., Wendroth, O., van Genuchten, M.Th., 1998b. A parameter estimation analysis of the evaporation method for determining soil hydraulic properties. Soil Sci. Soc. Am. J., 62, 4, 894–905.10.2136/sssaj1998.03615995006200040007xOpen DOISearch in Google Scholar

Šimůnek, J., van Genuchten, M.Th., Šejna, M., 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J., 15, DOI: 10.2136/vzj2016.04.0033.10.2136/vzj2016.04.0033Open DOISearch in Google Scholar

van Dam, J.C., Stricker, J.N.M., Droogers, P., 1994. Inverse method to determine soil hydraulic functions from multistep outflow experiments. Soil Sci. Soc. Am. J., 58, 3, 647–652.10.2136/sssaj1994.03615995005800030002xSearch in Google Scholar

van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002xOpen DOISearch in Google Scholar

van Genuchten, M.Th., Leij, F.J., Yates, S.R., 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Report EPA/600/2–91/065. U.S. Environmental Protection Agency, Ada, OK.Search in Google Scholar

Wang, S., Tokunaga, T.K., Wan, J., Dong, W., Kim, Y., 2016. Capillary pressure-saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping, Water Resour. Res., 52, DOI: 10.1002/2016WR018816.10.1002/2016WR018816Open DOISearch in Google Scholar

Wendroth, O., Ehlers, W., Hopmans, J.W., Klage, H., Halbertsma, J., Wösten, J.H.M., 1993. Reevaluation of the evaporation method for determining hydraulic functions in unsaturated soils. Soil Sci. Soc. Am. J., 57, 1436–1443.10.2136/sssaj1993.03615995005700060007xOpen DOISearch in Google Scholar

Wind, G.P., 1968. Capillary conductivity data estimated by a simple simple method for determining soil hydraulic properties in the method. In: Rijtema, P.E., Wassink, H. (Eds.): Proc. Wageningen Symp. Water in the Unsaturated Zone. Vol. 1. June 1966. Int. Assoc. Scientific Hydrol., Gentbrugge, Belgium, pp. 181–191.Search in Google Scholar

Wraith, J.M., Or, D., 1998. Nonlinear parameter estimation using spreadsheet software. J. Nat. Resour. Life Sci. Educ., 27, 13–19.10.2134/jnrlse.1998.0013Search in Google Scholar

Zhuang, L., Bezerra Coelho, C.R., Hassanizadeh, S.M., van Genuchten, M.Th., 2017. Analysis of the hysteretic hydraulic properties of unsaturated soil. Vadose Zone J., 16, 5. DOI: 10.2136/vzj2016.11.0115.10.2136/vzj2016.11.0115Open DOISearch in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other