Cite

Al-Muttair, F.F., Al-Turbak, A.S., 1991. Modeling of infiltration from an artificial recharge basin with a decreasing ponded depth. J. King Saud Univ. Eng. Sci., 3, 89–100.10.1016/S1018-3639(18)30539-7Search in Google Scholar

Bouwer, H., 1999. Artificial recharge of groundwater: systems, design, and management. In: Hydraulic Design Handbook. Larry W. Mays, New York.Search in Google Scholar

Bouwer, H., 2002. Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J., 10, 121–142. DOI: 10.1007/s10040-001-0182-4.10.1007/s10040-001-0182-4Search in Google Scholar

Braud, I., Dantas-Antonino, A.C., Vauclin, M., Thony, J.L., Ruelle, P., 1995. A simple soil-plant-atmosphere transfer model (SiSPAT) development and field verification. J. Hydrol., 166, 213–250.10.1016/0022-1694(94)05085-CSearch in Google Scholar

Constantz, J., 1982. Temperature dependence of unsaturated hydraulic conductivity of two soils. Soil Sci. Soc. Am. J., 46, 466–470.10.2136/sssaj1982.03615995004600030005xSearch in Google Scholar

Constantz, J., Thomas, C.L., Zellweger, G., 1994. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge. Water Resour. Res., 30, 3253–3264.10.1029/94WR01968Search in Google Scholar

Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20–34. http://dx.doi.org/10.1016/j.geoderma.2015.08.00610.1016/j.geoderma.2015.08.006Search in Google Scholar

Dohnal, M., Jelinkova, V., Snehota, M., Dusek, J., Brezina, J., 2013. Tree-dimensional numerical analysis of water flow affected by entrapped air: Application of noninvasive imaging techniques. Vadose Zone J., 12. DOI: 10.2136/vzj2012.0078.10.2136/vzj2012.0078Search in Google Scholar

Faybishenko, B.A., 1995. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: laboratory experiments. Water Resour. Res., 31, 2421–2435. DOI: 10.1029/95WR01654.10.1029/95WR01654Search in Google Scholar

Gette-Bouvarot, M., Mermillod-Blondin, F., Angulo-Jaramillo, R., Delolme, C., Lemoine, D., Lassabatere, L., Loizeau, S., Volatier, L., 2014. Coupling hydraulic and biological measurements highlights the key influence of algal biofilm on infiltration basin performance. Ecohydrology, 7, 950–964.10.1002/eco.1421Search in Google Scholar

Goutaland, D., Winiarski, T., Lassabatere, L., Dubé, J.S., Angulo-Jaramillo, R., 2013. Sedimentary and hydraulic characterization of a heterogeneous glaciofluvial deposit: Application to the modeling of unsaturated flow. Eng. Geol., 166, 127–139. http://dx.doi.org/10.1016/j.enggeo.2013.09.00610.1016/j.enggeo.2013.09.006Search in Google Scholar

Greskowiak, J., Prommer, H., Massmann, G., Johnston, C.D., Nützmann, G., Pekdeger, A., 2005. The impact of variably saturated conditions on hydrogeochemical changes during artificial recharge of groundwater. Appl. Geochem., 20, 1409–1426. DOI: 10.1016/j.apgeochem.2005.03.002.10.1016/j.apgeochem.2005.03.002Search in Google Scholar

Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.Y., 1994. 3-Dimensional analysis of infiltration from the disc infiltrometer. 2. Physically-based infiltration equation. Water Resour. Res., 30, 2931–2935.10.1029/94WR01788Search in Google Scholar

Heilweil, V.M., Solomon, D.K., Ortiz, G., 2009. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A. Boletin Geologico y Minero, 120, 185–196.Search in Google Scholar

Hillel, D., 1998. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. Academic Press, San Diego, USA, 771 p.Search in Google Scholar

Jaynes, D.B., 1990. Temperature variations effect on field-measured infiltration. Soil Sci. Soc. Am. J., 54, 305–312.10.2136/sssaj1990.03615995005400020002xSearch in Google Scholar

Joekar-Niasar, V., Doster, F., Armstrong, R.T., Wildenschild, D., Celia, M.A., 2013. Trapping and hysteresis in two-phase flow in porous media: A pore-network study. Water Resour. Res., 49, 4244–4256. DOI:10.1002/wrcr.20313.10.1002/wrcr.20313Search in Google Scholar

Kildsgaard, J., Engesgaard, P., 2001. Numerical analysis of biological clogging in two-dimensional sand box experiments. J. Contam. Hydrol., 50, 261–285. DOI: 10.1016/S0169-7722(01)00109-7.10.1016/S0169-7722(01)00109-7Search in Google Scholar

Köhne, J.M., Köhne, S., Šimůnek, J., 2009a. A review of model applications for structured soils: a) Water flow and tracer transport. J. Contam. Hydrol., 104, 4–35.10.1016/j.jconhyd.2008.10.00219012994Search in Google Scholar

Köhne, J.M., Köhne, S., Šimůnek, J., 2009b. A review of model applications for structured soils: b) Pesticide transport. J. Contam. Hydrol., 104, 36–60.10.1016/j.jconhyd.2008.10.00319012993Search in Google Scholar

Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments- BEST. Soil Sci. Soc. Am. J., 70, 521–532.10.2136/sssaj2005.0026Search in Google Scholar

Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J.M., Simunek, J., Haverkamp, R., 2009. Numerical evaluation of a set of analytical infiltration equations. Water Resour. Res., 45.10.1029/2009WR007941Search in Google Scholar

Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J.P., Winiarski, T., Delolme, C., 2010. Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma, 156, 316–325. http://dx.doi.org/10.1016/j.geoderma.2010.02.03110.1016/j.geoderma.2010.02.031Search in Google Scholar

Lin, C., Greenwald, D., Banin, A., 2003. Temperature dependence of infiltration rate during large scale water recharge into soils. Soil Sci. Soc. Am. J., 67, 487–493.10.2136/sssaj2003.4870Search in Google Scholar

Loizeau, S., 2013. Amélioration de la compréhension des fonctionnements hydrodynamiques du champ captant de Crépieux-Charmy. [Improvement of the understanding of hydrodynamic functioning of the Crépeiux-Chamy well field]. Université de Grenoble, Grenoble, 220 p.Search in Google Scholar

Marinas, M., Smith, J., Roy, J., 2009. The effects of disconnect entrapped air on hydraulic conductivity in the presence of water table fluctuations. In: AGU Spring Meeting Abstracts.Search in Google Scholar

Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., Tabbagh, A., 2003. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res., 39, 1138. DOI:10.1029/2002WR001581.10.1029/2002WR001581Search in Google Scholar

Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513–522.10.1029/WR012i003p00513Search in Google Scholar

Muskat, M., 1937. The Flow of Homogeneous Fluids Through Porous Media. Mac Graw Hill, New York.10.1063/1.1710292Search in Google Scholar

Nasta, P., Lassabatere, L., Kandelous, M.M., Simunek, J., Angulo-Jaramillo, R., 2012. Analysis of the role of tortuosity and infiltration constants in the Beerkan method. Soil Sci. Soc. Am. J., 76, 1999–2005.10.2136/sssaj2012.0117nSearch in Google Scholar

Okubo, T., Matsumoto, J., 1979. Effect of infiltration rate on biological clogging and water quality changes during artificial recharge. Water Resour. Res., 15, 1536–1542. DOI: 10.1029/WR015i006p01536.10.1029/WR015i006p01536Search in Google Scholar

Rai, S.N., Singh, R.N., 1985. Water table fluctuations in response to time varying recharge. (Proceedings of the Jerusalem Symposium Scientific Basis for Water Resources Management). IAHS Publ. no. 153. IAHS Press, Wallingford, pp. 287–294.Search in Google Scholar

Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. J. Appl. Phys., 1, 318–333. DOI: 10.1063/1.1745010.10.1063/1.1745010Search in Google Scholar

Schuh, W.M., 1988. In-situ method for monitoring layered hydraulic impedance development during artificial recharge with turbid water. J. Hydrol., 101, 173–189. DOI: 10.1016/0022-1694(88)90034-0.10.1016/0022-1694(88)90034-0Search in Google Scholar

Schuh, W.M., 1990. Seasonal variation of clogging of an artificial recharge basin in a northern climate. J. Hydrol., 121, 193–215. DOI: 10.1016/0022-1694(90)90232-M.10.1016/0022-1694(90)90232-MSearch in Google Scholar

Seymour, R.M., 2000. Air entrapment and consolidation occurring with saturated hydraulic conductivity changes with intermittent wetting. Irrig. Sci., 20, 9–14.10.1007/PL00006716Search in Google Scholar

Šimůnek, J., Jarvis, N.J., van Genuchten, M.T., Gärdenäs, A., 2003. Review and comparison of models for describing nonequilibrium and preferential flow and transport in the vadose zone. J. Hydrol., 272, 14–35.10.1016/S0022-1694(02)00252-4Search in Google Scholar

Sněhota, M., Císlerová, M., Gao Amin, M.H., Hall, L.D., 2010. Tracing the entrapped air in heterogeneous soil by means of magnetic resonance imaging. Vadose Zone J., 9, 373–384. DOI: 10.2136/vzj2009.0103.10.2136/vzj2009.0103Search in Google Scholar

Stephens, D.B., Hsu, K.-C., Prieksat, M.A., Ankeny, M.D., Blandford, N., Roth, T.L., Kelsey, J.A., Whitworth, J.R., 1998. A comparison of estimated and calculated effective porosity. Hydrogeol. J., 6, 156–165.10.1007/s100400050141Search in Google Scholar

Tu, Y.-C., Ting, C.-S., Tsai, H.-T., Chen, J.-W., Lee, C.-H., 2011. Dynamic analysis of the infiltration rate of artificial recharge of groundwater: A case study of Wanglong Lake, Pingtung, Taiwan. Environ. Earth Sci., 63, 77–85. DOI: 10.1007/s12665-010-0670-8.10.1007/s12665-010-0670-8Search in Google Scholar

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002xSearch in Google Scholar

Vandenbohede, A., Van Houtte, E., 2012. Heat transport and temperature distribution during managed artificial recharge with surface ponds. J. Hydrol., 472–473, 77–89. DOI: 10.1016/j.jhydrol.2012.09.028.10.1016/j.jhydrol.2012.09.028Search in Google Scholar

Vogel, T., Dohnal, M., Votrubova, J., 2011. Modeling heat fluxes in macroporous soil under sparse young forest of temperate humid climate. J. Hydrol., 402, 367–376. DOI: 10.1016/j.jhydrol.2011.03.030.10.1016/j.jhydrol.2011.03.030Search in Google Scholar

Votrubová, J., Dohnal, M., Vogel, T., Tesař, M., 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil Water Res. 7, 125–137.10.17221/21/2012-SWRSearch in Google Scholar

Wangemann, S.G., Kohl, R.A., Molumeli, P.A., 2000. Infiltration and percolation influenced by antecedent soil water content and air entrapment. Trans. Am. Soc. Agric. Eng., 43, 1517–1523.10.13031/2013.3051Search in Google Scholar

Winiarski, T., Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., 2013. Characterization of the heterogeneous flow and pollutant transfer in the unsaturated zone in the fluvio-glacial deposit. Procedia Environ. Sci., 19, 955–964. http://dx.doi.org/10.1016/j.proenv.2013.06.10510.1016/j.proenv.2013.06.105Search in Google Scholar

Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., Legret, M., 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J., 9, 107–116.10.2136/vzj2009.0039Search in Google Scholar

Yilmaz, D., Lassabatere, L., Deneele, D., Angulo-Jaramillo, R., Legret, M., 2013. Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag. Vadose Zone J., 12, 2.10.2136/vzj2012.0121Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other