Open Access

Design of a new hybrid artificial neural network method based on decision trees for calculating the Froude number in rigid rectangular channels


Cite

Ab Ghani, A., Salem, A.M., Abdullah, R., Yahaya, A.S., Zakaria, N.A., 1999. Incipient motion of sediment particles over loose deposited beds in a rigid rectangular channel. Proc. 8th Int. Conf. Urban Storm Drainage, Sydney, Australia.Search in Google Scholar

Ab Ghani, A., Zakaria, N.A., Kassim, M., Nasir, B.A., 2001. Sediment size characteristics of urban drains in Malaysian cities. Urban Water J., 2, 335-341.10.1016/S1462-0758(01)00013-9Search in Google Scholar

Ab Ghani, A., Azamathulla, H.M., Chang, C.K., Zakaria, N.A., Hasan, Z.A., 2011. Prediction of total bed material load for rivers in Malaysia: A case study of Langat, Muda and Kurau Rivers. Environ. Fluid Mech., 11, 3, 307-318.10.1007/s10652-010-9177-9Search in Google Scholar

Ackers, P., White, W.R., 1973. Sediment transport: new approach and analysis. J. Hydraul. Div., 99, 2041-2060.10.1061/JYCEAJ.0003791Search in Google Scholar

Ahmad, Z., Azamathulla, H.Md., Zakaria, N.A., 2011. ANFISbased approach for the estimation of transverse mixing coefficient. Water Sci. Technol., 63, 1005-1010.10.2166/wst.2011.28221411952Search in Google Scholar

Azamathulla, H.M., Ab Ghani, A., Zakaria, N.A., Kiat, C.C., Siang, L.C., 2008. Knowledge extraction from trained neural network scour models. Modern Appl. Sci., 2, 4, 52-62.10.5539/mas.v2n4p52Search in Google Scholar

Bilhan, O., Emiroglu, M.E., Kisi, O., 2010. Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel. Adv. Eng. Softw., 41, 831-837.10.1016/j.advengsoft.2010.03.001Search in Google Scholar

Bonakdari, H., Ebtehaj, I., 2014. Study of sediment transport using soft computing technique. In: Schleiss et al. (Eds): River Flow 2014, Chapter 116, pp. 933-940, Taylor & Francis Group, London, UK.10.1201/b17133-126Search in Google Scholar

Bong, C.H.J., Lau, T.L., Ab Ghani, A., 2013. Verification of equations for incipient motion studies for rigid rectangular channel. Water Sci. Technol., 67, 395-403.10.2166/wst.2012.58023168641Search in Google Scholar

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1993. Classification and Regression Trees. Wadsworth, Inc. California, USA, 368 p.Search in Google Scholar

Christopher, M., 1995. Neural networks for pattern recognition. Oxford University Press, Oxford, UK, 482 p.Search in Google Scholar

Ebtehaj, I., Bonakdari, H., 2013. Evaluation of sediment transport in sewer using artificial neural network. Eng. Appl. Comput. Fluid Mech., 7, 382-392.10.1080/19942060.2013.11015479Search in Google Scholar

Ebtehaj, I., Bonakdari, H., 2014. Comparison of genetic algorithm and imperialist competitive algorithms in predicting bed load transport in clean pipe. Water Sci. Technol., 70, 1695-1701.10.2166/wst.2014.43425429460Search in Google Scholar

Ebtehaj, I., Bonakdari, H., 2016. Bed load sediment transport estimation in a clean pipe using multilayer perceptron with different training algorithms. KSCE J. Civil Eng., 20, 581-589.10.1007/s12205-015-0630-7Search in Google Scholar

Ebtehaj, I., Bonakdari, H., Sharifi, A., 2014. Design criteria for sediment transport in sewers based on self-cleansing concept. J. Zhejiang-Univ. Sci-A., 15, 914-924.10.1631/jzus.A1300135Search in Google Scholar

Ebtehaj, I., Bonakdari, H., Khoshbin, F., Azimi, H., 2015. Pareto genetic design of GMDH-type neural network for predict discharge coefficient in rectangular side orifices. Flow Meas. Instrum., 41, 67-74.10.1016/j.flowmeasinst.2014.10.016Search in Google Scholar

El-Zaemey, A.K.S., 1991. Sediment transport over deposited beds in sewers. PhD Thesis, Newcastle University, Newcastle Upon Tyne, UK.Search in Google Scholar

Gocić, M., Motamedi, S., Shamshirband, S., Petković, D., Ch, S., Hashim, R., Arif, M., 2015. Soft computing approaches for forecasting reference evapotranspiration. Comput. Electron. Agr., 113, 164-173.10.1016/j.compag.2015.02.010Search in Google Scholar

Haddadchi, A., Movahedi, N., Vahidi, E., Omid, M.H., Dehghani, A.A., 2013. Evaluation of suspended load transport rate using transport formulas and artificial neural network models (Case study: Chelchay Catchment). J. Hydrodynamics, Ser. B., 25, 459-470.10.1016/S1001-6058(11)60385-6Search in Google Scholar

Hagan, M.T., Demuth, H.B., Mark, H., Beale, M.H., 1996. Neural Network Design. PWS Publishing Company (Open Library), Boston, USA, 1012 p.Search in Google Scholar

Haykin, S., 1994. Neural Networks, a Comprehensive Foundation. Practice Hall, New Jersey, USA, 823 p.Search in Google Scholar

Ho, W.H., Tsai, J.T., Lin, B.T., Chou, J.H., 2009. Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchigenetic learning algorithm. Expert Syst., Appl., 36, 3216-3222.10.1016/j.eswa.2008.01.051Search in Google Scholar

Kavousi-Fard, A., Kavousi-Fard, F., 2013. A new hybrid correction method for short-term load forecasting based on ARIMA, SVR and CSA. J. Exp. Theor. Artif. Intel., 25, 559-574.10.1080/0952813X.2013.782351Search in Google Scholar

Kisi, O., 2008. The potential of different ANN techniques in evapotranspiration modelling. Hydrol. Process., 22, 2449-2460.10.1002/hyp.6837Search in Google Scholar

Kizilöz, B., Çevik, E., Aydoğan, B., 2015. Estimation of scour around submarine pipelines with Artificial Neural Network. Appl. Ocean Res., 51, 241-251.10.1016/j.apor.2015.04.006Search in Google Scholar

Najafzadeh, M., Lim, S.Y., 2014. Application of improved neuro-fuzzy GMDH to predict scour depth at sluice gates. Earth Sci. Inform., 8, 187-196.10.1007/s12145-014-0144-8Search in Google Scholar

Najafzadeh, M., Barani, G.A., 2011. Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Sci. Iran., 18, 1207-1213.10.1016/j.scient.2011.11.017Search in Google Scholar

Novak, P., Nalluri, C., 1984. Incipient motion of sediment particles over fixed beds. J. Hydraul. Res., 22, 181-197.10.1080/00221688409499405Search in Google Scholar

Oliver, N., 2001. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer-Verlag, Berlin Heidelberg, Berlin, Germany, 785 p.Search in Google Scholar

Safari, M.J.S., Mohammadi, M., Manafpour, M., 2011. Incipient motion and deposition of sediment in rigid boundary channels. In: Proc. 15th Int. Conf. Transport & Sedimentation of Solid Particles. Wroclaw, Poland.Search in Google Scholar

Salem, A.M., 2013. The effects of the sediment bed thickness on the incipient motion of particles in a rigid rectangular channel. In: Proc. 17th Int. Water Technology Conf., IWTC17, Istanbul, Turkey.Search in Google Scholar

Shvidchenko, A.B., Pender, G., 2000. Flume study of the effect of relative depth on the incipient motion of coarse uniform sediments. Water Resour. Res., 36, 619-628.10.1029/1999WR900312Search in Google Scholar

Sun, S., Yan, H., Kouyi, G.L., 2014. Artificial neural network modelling in simulation of complex flow at open channel junctions based on large data sets. Environ. Model. Softw., 62, 178-187.10.1016/j.envsoft.2014.08.026Search in Google Scholar

Vongvisessomjai, N., Tingsanchali, T., Babel, M.S., 2010. Non-deposition design criteria for sewers with part-full flow. Urban Water J., 7, 61-77.10.1080/15730620903242824Search in Google Scholar

Yalin, M.S., 1977. Mechanics of Sediment Transport. Pergamon Press, Oxford, UK, 360 p.Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other