Cite

ASTM Standard D3385-09, 2009. Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer. West Conshohocken, PA, www.astm.org.Search in Google Scholar

Bagarello, V, Iovino, M., Lai, J., 2013. Field and numerical tests of the two ponding depth procedure for analysis of single- ring pressure infiltrometer data. Pedosphere, 2, 779-789.10.1016/S1002-0160(13)60069-7Search in Google Scholar

Cislerova, M., Šimůnek, J., Vogel, T., 1988. Changes of steadystate infiltration rates in recurrent ponding infiltration experiments. J. Hydrol., 104, 1-16.10.1016/0022-1694(88)90154-0Search in Google Scholar

Dohnal, M., Dušek, J., Vogel, T., Císlerová, M., Lichner, Ľ., Štekauerová, V., 2009. Ponded infiltration into soil with biopores - field experiment and modeling. Biologia, 64, 580-584.10.2478/s11756-009-0078-7Search in Google Scholar

Dohnal, M., Dusek, J., Vogel, T., 2010. Improving hydraulic conductivity estimates from minidisk infiltrometer measurements for soils with wide pore-size distributions. Soil Sci. Soc. Am. J., 74, 804-811.10.2136/sssaj2009.0099Search in Google Scholar

Dohnal, M., Jelinková, V., Snehota, M., Dusek, J., Brezina, J., 2013. Three-dimensional numerical analysis of water flow affected by entrapped air: application of noninvasive imaging techniques. Vadose Zone J., 12, 1, DOI: 10.2136/vzj2012.007810.2136/vzj2012.0078Search in Google Scholar

Dusek, J., Dohnal, M., Vogel, T., 2009. Numerical analysis of ponded infiltration experiment under different experimental conditions. Soil & Water Res., 4, S22-S27.10.17221/1368-SWRSearch in Google Scholar

Ganz, Ch., Bachmann, J., Noell, U. et al., 2014. Hydraulic modeling and in situ electrical resistivity tomography to analyze ponded infiltration into a water repellent sand. Vadose Zone J., 13, 1, DOI:10.2136/vzj2013.04.007410.2136/vzj2013.04.0074Search in Google Scholar

Gerke, H.H., van Genuchten, M.Th., 1993. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res., 29, 305-319.10.1029/92WR02339Search in Google Scholar

Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.-Y., 1994. Three dimensional analysis of infiltration from the disc infiltrometer: 2. Physically-based infiltration equation. Water Resour. Res., 30, 2931-2935.10.1029/94WR01788Search in Google Scholar

Hillel, D., 1998. Environmental Soil Physics. Elsevier Academic Press, San Diego, CA, USA.Search in Google Scholar

Hogarth, W.L., Lockington, D.A., Barry, D.A., Parlange, M.B., Haverkamp, R., Parlange, J.Y., 2013. Infiltration in soils with a saturated surface. Water Resour. Res., 49, 5, 2683-2688.10.1002/wrcr.20227Search in Google Scholar

Johnson, A.I., 1963. A field method for measurement of infiltration. General ground-water techniques. Geological Survey Water-Supply Paper 1544-f.Search in Google Scholar

Miller, E.E., Klute, A., 1967. The dynamics of soil water. Part I - mechanical forces. In: Hagan, R.M., Haise, H.R, Edminster, T.W. (Eds.): Irrigation of Agricultural Lands. Am. Soc. Agron., Madison, WI, USA, pp. 209-244.10.2134/agronmonogr11.c13Search in Google Scholar

Mirus, B.B., Perkins, K.S., Nimmo, J.R., Singha, K., 2008. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 2. Inverse modeling for effective properties. Vadose Zone J., 8, 496-509.10.2136/vzj2008.0051Search in Google Scholar

Nakhaei, M., Šimůnek, J., 2014. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. J. Hydrol. Hydromech., 62, 1, 7-15.10.2478/johh-2014-0008Search in Google Scholar

Nimmo, J.R., 2012. Preferential flow occurs in unsaturated conditions. Hydrol. Process., 26, 786-789.10.1002/hyp.8380Search in Google Scholar

Philip, J.R., 1954. Some recent advances in hydrologic physics. J. Inst. Engrs. Australia, 26, 255-259.Search in Google Scholar

Philip, J.R., 1957. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci., 84, 257-284.10.1097/00010694-195709000-00010Search in Google Scholar

Šimůnek, J., 1988. Infiltration - numerical simulation. Vodohospodársky Časopis, 36, 407-420. (In Czech.)Search in Google Scholar

Smettem, K.R.J., Parlange, J.-Y., Ross, P.J., Haverkamp, R., 1994. Three dimensional analysis of infiltration from the disc infiltrometer: 1. A capillary based theory. Water Resour. Res., 30, 2925-2929.10.1029/94WR01787Search in Google Scholar

Smiles, D.E., Knight, J.H., 1976. A note on the use of the Philip infiltration equation. Aust. J. Soil Res., 10, 143-150.10.1071/SR9760103Search in Google Scholar

Talsma,T., Parlange, J.-Y., 1972. One-dimensional infiltration. Aust. J. Soil Res., 10, 143-150.10.1071/SR9720143Search in Google Scholar

Turner, N.C., Parlange, J.-Y., 1974. Lateral movement at the periphery of a one-dimensional flow of water. Soil Sci., 118, 70-77.10.1097/00010694-197408000-00002Search in Google Scholar

Vandervaere, J.-P., Peugeot, C., Vauclin, M., Angulo-Jaramillo, R., Lebel, T., 1997. Estimating hydraulic conductivity of crusted soils using disc infiltrometers and minitensiometers. J. Hydrol., 188-189, 203-223.10.1016/S0022-1694(96)03160-5Search in Google Scholar

van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892-898.10.2136/sssaj1980.03615995004400050002xSearch in Google Scholar

Vogel, T., Gerke, H.H., Zhang, R., van Genuchten, M.Th., 2000. Modelling flow and transport in a two dimensional dual-permeability system with spatially variable hydraulic properties. J. Hydrol., 238, 78-89.10.1016/S0022-1694(00)00327-9Search in Google Scholar

Vogel, T., van Genuchten, M.Th., Císlerová, M., 2001. Effect of the shape of soil hydraulic functions near saturation on variably-saturated flow predictions. Advances in Water Resources, 24, 133-144.10.1016/S0309-1708(00)00037-3Search in Google Scholar

Votrubova, J., Jelinkova, V., Nemcova, R., Tesar, M., Vogel, T., Cislerova, M., 2010. The soil apparent infiltrability observed with ponded infiltration experiment in a permanent grid of infiltration rings. Geophysical Research Abstracts, Vol. 12, EGU2010-11898.Search in Google Scholar

Votrubova, J., Dohnal, M., Vogel, T., Tesař, M., 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil & Water Res., 7, 125-137.10.17221/21/2012-SWRSearch in Google Scholar

Wang D., Feyen J., van Genuchten, M.Th., Nielsen, D.R., 1998. Air entrapment effects on infiltration rate and flow instability. Water Resour. Res., 34, 213-222.10.1029/97WR02804Search in Google Scholar

Wang, C., Mao, X., Hatano, R., 2014. Modeling ponded infiltration in fine textured soils with coarse interlayer. Soil Sci. Soc. Am. J., 78, 745-753.10.2136/sssaj2013.12.0535Search in Google Scholar

White, I., Sully, M., 1987. Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resour. Res., 23, 1514-1522.10.1029/WR023i008p01514Search in Google Scholar

Zhang, R. 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J., 61, 1024-1030.Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other