Open Access

Root distributions in a laboratory box evaluated using two different techniques (gravimetric and image processing) and their impact on root water uptake simulated with HYDRUS


Cite

Arsenault, J.L., Pouleur, S., Messier, C., Guay, R., 1995. WinRHIZO, a root-measuring system with a unique overlap correction method. HortScience, 30, 906.10.21273/HORTSCI.30.4.906DSearch in Google Scholar

Bengough, A.G., McKenzie, B.M., Hallett, P.D., Valentine, T.A., 2011. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62, 1, 59–68.10.1093/jxb/erq35021118824Search in Google Scholar

Bingham, I.J., Wu, L., 2011. Simulation of wheat growth using the 3D root architecture model SPACSYS: Validation and sensitivity analysis. European Journal of Agronomy, 34, 181–189.10.1016/j.eja.2011.01.003Search in Google Scholar

Chen, Y.L., Palta, J., Clements, J., Buirchelld, B., Siddiqueb, K.H.M., Rengel, Z., 2014. Root architecture alteration of narrow-leafed lupin and wheat in response to soil compaction. Field Crops Research, 165, 61–70.10.1016/j.fcr.2014.04.007Search in Google Scholar

Dane, J.H., Topp, G.C., 2002. Methods of Soil Analysis, Part 4, Physical Methods. SSSA, Madison, USA, 1692 p. ISBN: 0-89118-841-X10.2136/sssabookser5.4Search in Google Scholar

de Dorlodot, S., Forster, B., Pages, L., Price, A., Tuberosa, R., Draye, X., 2007. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 12, 10, 474–481.10.1016/j.tplants.2007.08.01217822944Search in Google Scholar

Doussan, C., Pierret, A., Garrigues, E., Pagès, L., 2006. Water uptake by plant roots: II – Modelling of water transfer in the soil root-system with explicit account of flow within the root system – Comparison with experiments. Plant and Soil, 283, 1–2, 99–117.10.1007/s11104-004-7904-zSearch in Google Scholar

Feddes, R.A., Kowalik, P.J., Zaradny, H., 1978. Simulation of Field Water Use and Crop Yield. John Wiley, New York, 188 p.Search in Google Scholar

Garrigues, E., Doussan, C., Pierret A., 2006. Water uptake by plant roots: I – Formation and Propagation of a Water Extraction Front in Mature Root Systems as Evidenced by 2D Light Transmission Imaging. Plant and Soil, 283, 1–2, 83–98.10.1007/s11104-004-7903-0Search in Google Scholar

Hallett, P.D., Karim, K.H., Bengough, A.G., Otten, W., 2013. Biophysics of the vadose zone: From reality to model systems and back again. Vadose Zone Journal, 12, 4, DOI: 10.2136/vzj2013.05.009010.2136/vzj2013.05.0090Search in Google Scholar

Hillel, D., 2004. Introduction to Environmental Soil Physics. Elsevier Academic Press, Amsterdam. ISBN 0-12-348655-6.Search in Google Scholar

Himmelbauer, M.L., Novák, V., 2008. Root distribution functions of spring barley, winter rye and maize. Die Bodenkultur, 59, 1–4, 165–172.Search in Google Scholar

Himmelbauer, M.L., Loiskandl, W., Kastanek, F., 2004. Estimating length, average diameter and surface area of roots using two different Image analyses system. Plant and Soil, 260, 1–2, 111–120.10.1023/B:PLSO.0000030171.28821.55Search in Google Scholar

Himmelbauer, M.L., Loiskandl, W., Rousseva, S., 2010. Spatial root distribution and water uptake of maize grown on field with subsoil compaction. Journal of Hydrology and Hydro-mechanics, 58, 3, 163–174.10.2478/v10098-010-0015-zSearch in Google Scholar

Himmelbauer, M.L., Vateva, V., Lozanova, L., Loiskandl, W., Rousseva, S., 2013. Site effects on root characteristics and soil protection capability of two cover crops grown in South Bulgaria. Journal of Hydrology and Hydromechanics, 61, 1, 30–38.10.2478/johh-2013-0005Search in Google Scholar

Iversen, C.M., Murphy, M.T., Allen, M.F., Childs, J., Eissenstat, D.M., Lilleskov, E.A., Sarjala, T.M., Sloan, V.L., Sullivan, P.F., 2012. Advancing the use of minirhizotrons in wet-lands. Plant and Soil, 352, 1–2, 23–39.10.1007/s11104-011-0953-1Search in Google Scholar

Kaspar, T.C., Ewing, R.P., 1997. ROOTEDGE: Software for Measuring Root Length from Desktop Scanner Images. Agronomy Journal, 89, 6, 932–940.10.2134/agronj1997.00021962008900060014xSearch in Google Scholar

Kodešová, R., Kodeš, V., Žigová, A., Šimůnek, J., 2006. Impact of plant roots and soil organisms on soil micromorphology and hydraulic properties. Biologia, 61(Suppl. 19), S339–S343.10.2478/s11756-006-0185-7Search in Google Scholar

Kodešová, R., Němeček, K., Žigová, A., Nikodem, A., Fér, M., 2015. Using dye tracer for visualizing roots impact on soil structure and soil porous system. Biologia, 70, 11, 1439–1443.10.1515/biolog-2015-0166Search in Google Scholar

Loades, K.W., Bengough, A.G., Bransby, M.F., Hallett, P.D., 2013. Biomechanics of nodal, seminal and lateral roots of barley: effects of diameter, waterlogging and mechanical impedance. Plant and Soil, 370, 1–2, 407–418.10.1007/s11104-013-1643-ySearch in Google Scholar

Lü, G.H., Song, J.Q., Bai, W.B., Wu, Y.F., Liu, Y., Kang, Y. H., 2015. Effects of different irrigation methods on micro-environments and root distribution in winter wheat fields. Journal of Integrative Agriculture, 14, 8, 1658–1672.10.1016/S2095-3119(14)60927-8Search in Google Scholar

Maeght, J.L., Rewald, B., Pierret, A., 2013. How to study deep roots–and why it matters. Frontiers in Plant Science. 4, Article 299.10.3389/fpls.2013.00299374147523964281Search in Google Scholar

Moradi, A.B., Conesa, H.M., Robinson, B., Lehmann, E., Kuehne, G., Kaestner, A., Oswald, S., Schulin, R., 2009. Neutron radiography as a tool for revealing root development in soil: capabilities and limitations. Plant and Soil, 318, 1–2, 243–255.10.1007/s11104-008-9834-7Search in Google Scholar

Moradi, A.B., Oswald, S.E., Nordmeyer-Massner, J.A., Pruessmann, K.P., Robinson, B.H., Schulin, R., 2010. Analysis of nickel concentration profiles around the roots of the hyperaccumulator plant Berkheya coddii using MRI and numerical simulations. Plant and Soil, 328, 1, 291–302.10.1007/s11104-009-0109-8Search in Google Scholar

Moradi, A.B., Hopmans, J.W., Oswald, S.E., Menon, M., Carminati, A., Lehmann, E., 2013. Applications of Neutron Imaging in Soil–Water–Root Systems. In: Anderson, S.A., Hopmans, J.W. (Eds.): Soil–Water–Root Processes: Advances in Tomography and Imaging. American Society of Agronomy, Soil Science Society of America, Crop Science Society of America, Madison, USA, pp. 113–136. ISBN: 978-0-89118-959-6.10.2136/sssaspecpub61.c6Search in Google Scholar

Moran, C.J., Pierret, A., Stevenson, A.W., 2000. X-ray absorption and phase contrast imaging to study the interplay between plant roots and soil structure. Plant and Soil, 223, 1–2, 99–115.10.1023/A:1004835813094Search in Google Scholar

Neumann, G., George, T.S., Plassard, C., 2009. Strategies and methods for studying the rhizosphere–the plant science toolbox. Plant and Soil, 321, 1–2, 431–456.10.1007/s11104-009-9953-9Search in Google Scholar

Nikodem, A., Pavlů, L., Kodešová, R., Borůvka, L., Drábek, O., 2013. Study of podzolization process under different vegetation cover in the Jizerské hory Mts. region. Soil and Water Research, 8, 1, 1–12.10.17221/56/2012-SWRSearch in Google Scholar

Novák, V., 2012. Evapotranspiration in the Soil-Plant-Atmosphere System. Springer, Dordrecht, 253 p.10.1007/978-94-007-3840-9Search in Google Scholar

Oswald, S.E., Menon, M., Carminati, A., Vontobel, P., Lehmann, E., Schulin, R., 2008. Quantitative imaging of infiltration, root growth, and root water uptake via neutron radiography. Vadose Zone Journal, 7, 3, 1035–1047.10.2136/vzj2007.0156Search in Google Scholar

Rasband, W.S., 1997–2014. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/.Search in Google Scholar

Rudolph, N., Esser, H.G., Carminati, A., Moradi, A.B., Hilger, A., Kardjilov, N., Nagl, S., Oswald, S.E., 2012. Dynamic oxygen mapping in the root zone by fluorescence dye imaging combined with neutron radiography. Journal of Soils and Sediments, 12, 1, 63–74.10.1007/s11368-011-0407-7Search in Google Scholar

Rudolph, N., Voss, S., Moradi, A.B., Nagl, S., Oswald, S.E., 2013. Spatio-temporal mapping of local soil pH changes induced by roots of lupin and soft-rush. Plant and Soil, 369, 1–2, 669–680.10.1007/s11104-013-1775-0Search in Google Scholar

Rudolph-Mohr, N., Vontobel, P., Oswald, S.E., 2014. A multi-imaging approach to study the root–soil interface. Annals of Botany, 114, 8, 1779–1787.10.1093/aob/mcu200464968925344936Search in Google Scholar

Schulz, H., Postma, A.J., van Dusschoten, D., Scharr, H., Behnke, S., 2012. 3D reconstruction of plant roots from MRI images. In: Csurka, G., Braz, J. (Eds.): Proceedings of the International Conference on Computer Vision Theory and Applications, VISAPP 2012, Rome, 24–26 February 2012.Search in Google Scholar

Shilo, T., Rubin, B., Ephrath, J.E., Eizenberg, H., 2013. Continuous non-destructive monitoring of Cyperus rotundus development using a minirhizotron. Weed Research, 53, 3, 164–168.10.1111/wre.12015Search in Google Scholar

Šimůnek, J., van Genuchten M.T., Šejna, M., 2008. Developmental and applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone Journal, 7, 587–600.10.2136/vzj2007.0077Search in Google Scholar

Šimůnek, J., Hopmans, J.W., 2009. Modeling compensated root water and nutrient uptake, Ecological Modeling, 220, 4, 505–521.10.1016/j.ecolmodel.2008.11.004Search in Google Scholar

Sinha, R.K. 2004. Modern plant physiology. Alpha Science International, Pangbourne, 635 p. ISBN 1-84265-029-7.Search in Google Scholar

Stingaciu, L., Schulz, H., Pohlmeier, A., Behnke, S., Zilken, H., Javaux, M., Vereecken, H., 2013. In situ root system architecture extraction from magnetic resonance imaging for water uptake modeling. Vadose Zone Journal, 12, 1. DOI: 10.2136/vzj2012.0019.10.2136/vzj2012.0019Search in Google Scholar

Tron, S., Bodner, G., Laio, F., Ridolfi, L., Leitner, D., 2015. Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological Modelling, 312, 200–210.10.1016/j.ecolmodel.2015.05.028456706026412932Search in Google Scholar

van Dam, J.C., Stricker, J.M.N., Droogers, P., 1994. Inverse method to determine soil hydraulic function from multi-step outflow experiment. Soil Science Society of America Journal, 58, 3, 647–652.10.2136/sssaj1994.03615995005800030002xSearch in Google Scholar

van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 5, 892–898.10.2136/sssaj1980.03615995004400050002xSearch in Google Scholar

Whiting, S.N., Leake, J.R., McGrath, S.P., Baker, A.J.M., 2000. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytologist, 145, 199–210.10.1046/j.1469-8137.2000.00570.xSearch in Google Scholar

Youssef, R.A., Chino, M., 1988. Development of a new rhizobox system to study the nutrient status in the rhizosphere, Soil Science and Plant Nutrition, 34, 3, 461–465, DOI: 10.1080/00380768.1988.10415701.10.1080/00380768.1988.10415701Search in Google Scholar

Zhang, X., Zhang, X., Liu, X., Shao, L., Sun, H., Chen, S., 2015. Incorporating root distribution factor to evaluate soil water status for winter wheat. Agricultural Water Management, 153, 32–41.10.1016/j.agwat.2015.02.001Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other