Cite

Adamson, A.W., 1990. Physical Chemistry of Surfaces. 5th ed. John Wiley & Sons, New York.Search in Google Scholar

Ad-hoc-Arbeitsgruppe Boden, 2005. Bodenkundliche Kartieranleitung. [Soil Mapping Manual]. 5th ed. Federal Institute for Geosciences and Natural Resources in cooperation with the Geological Services of the Federal States, Hannover. (In German.)Search in Google Scholar

Anderson, M.A., Hung, A.Y.C., Mills, D., Scott, M.S., 1995. Factors affecting the surface tension of soil solutions and solutions of humic acids. Soil Sci., 160, 111–116.10.1097/00010694-199508000-00004Search in Google Scholar

Bachmann, J., Woche, S.K., Goebel, M.O., Kirkham, M.B., Horton, R., 2003. Extended methodology for determining wetting properties of porous media. Water Resour. Res., 39, doi: 10.1029/2003WR002143.10.1029/2003WR002143Search in Google Scholar

Bachmann, J., Guggenberger, G., Baumgartl, T., Ellerbrock, R.H., Urbanek, E., Goebel, M.O., Kaiser, K., Horn, R., Fischer, W.R., 2008. Physical carbon sequestration mechanisms under special consideration of soil wettability. J. Plant Nutr. Soil Sci., 171, 14–26.10.1002/jpln.200700054Search in Google Scholar

Bayer, J., Schaumann, G.E., 2007. Development of soil water repellency in the course of isothermal drying and upon pH changes in two urban soils. Hydrol. Process., 21, 2266–2275.10.1002/hyp.6759Search in Google Scholar

Blackwell, P.S., 2003. Management of water repellency in Australia. In: Ritsema, C.J., Dekker, L.W. (Eds): Soil water repellency – Occurrence, Consequences, and Amelioration. Elsevier, Amsterdam, pp. 291–302.10.1016/B978-0-444-51269-7.50029-1Search in Google Scholar

Böttcher, J., Strebel, O., 1988. Spatial variability of groundwater solute concentrations at the water table under arable land and coniferous forest. Part 1: Methods for quantifying spatial variability (geostatistics, time series analysis, Fourier transform smoothing). J. Plant Nutr. Soil Sci., 151, 185–190.10.1002/jpln.19881510306Search in Google Scholar

Böttcher, J., Lauer, S., Strebel, O., Puhlmann, M., 1997. Spatial variability of canopy throughfall and groundwater sulfate concentrations under a pine stand. J. Environ. Qual., 26, 503–510.10.2134/jeq1997.00472425002600020023xSearch in Google Scholar

Buczko, U., Bens, O., Hüttl, R.F., 2007. Changes in soil water repellency in a pine-beech forest transformation chronosequence: Influence of antecedent rainfall and air temperatures. Ecol. Eng., 31, 154–164.10.1016/j.ecoleng.2007.03.006Search in Google Scholar

Dakora, F.D., Phillips, D.A., 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil, 245, 35–47.10.1023/A:1020809400075Search in Google Scholar

DeBano, L.F., 1981. Water repellent soils: A state of art. USDA Forest Service General Technical Report, PSW-46.10.2737/PSW-GTR-46Search in Google Scholar

Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil: I Potential and actual water-repellency. Water Resour. Res., 30, 2507–2517.10.1029/94WR00749Search in Google Scholar

Dekker, L.W., Ritsema, C.J., 2003. Wetting patterns in water repellent Dutch soils. In: Ritsema, C.J., Dekker, L.W. (Eds): Soil water repellency – Occurrence, Consequences, and Amelioration. Elsevier, Amsterdam, pp. 151–166.10.1016/B978-0-444-51269-7.50017-5Search in Google Scholar

Deurer, M., Bachmann, J., 2007. Modelling water movement in heterogeneous water-repellent soil: 2: Numerical simulation. Vadose Zone J., 6, 446–457, doi:10.2136/vzj2006.0061.10.2136/vzj2006.0061Search in Google Scholar

Diehl, D., Bayer, J.V., Woche, S.K., Bryant, R., Doerr, S.H., Schaumann, G.E., 2010. Reaction of soil water repellency to artificially induced changes in soil pH. Geoderma, 158, 375–384.10.1016/j.geoderma.2010.06.005Search in Google Scholar

Diehl, D., Schneckenburger, T., Krüger, J., Goebel, M.O., Woche, S.K., Schwarz, J., Shchegolikhina, A., Lang, F., Marschner, B., Thiele-Bruhn, S., Bachmann, J., Schaumann, G.E., 2014. Effect of multivalent cations, temperature and aging on soil organic matter interfacial properties. Environ. Chem., 11, 709–718.10.1071/EN14008Search in Google Scholar

Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev., 51, 33–65.10.1016/S0012-8252(00)00011-8Search in Google Scholar

Doerr, S.H., Ferreira, A.J.D., Walsh, R.P.D., Shakesby, R.A., Leighton-Boyce, G., Coelho, C.O.A., 2003. Soil water repellency as a potential parameter in rainfall-runoff modelling: experimental evidence at point to catchment scales from Portugal. Hydrol. Process., 17, 363–377.10.1002/hyp.1129Search in Google Scholar

Ellerbrock, R.H., Gerke, H.H., Bachmann, J., Goebel, M.O., 2005. Composition of organic matter for explaining wettability of three forest soils. Soil Sci. Soc. Am. J., 69, 57–66.10.2136/sssaj2005.0057Search in Google Scholar

Ferguson, G.S., Whitesides, G.M., 1992. Thermal Reconstruction of the Functionalized Interface of Polyethylene Carboxylic Acid and its Derivates. In: Schrader, M.E., Loeb, G.I. (Eds.): Modern Approaches to Wettability – Theory and Applications. Plenum Press, New York, pp. 143–177.10.1007/978-1-4899-1176-6_6Search in Google Scholar

Ganz, C., Bachmann, J., Noell, U., Lamparter, A., Duijnisveld, W.H.M., 2013. Hydraulic modeling and in situ electrical resistivity tomography (ERT) to analyze the ponded infiltration process into a water repellent sand. Vadose Zone J., doi: 10.2136/vzj2013.04.0074.10.2136/vzj2013.04.0074Search in Google Scholar

Goebel, M.O., Woche, S.K., Bachmann, J., Lamparter, A., Fischer, W.R., 2007. Significance of wettability-induced changes in microscopic water distribution for soil organic matter decomposition. Soil Sci. Soc. Am. J., 71, 1593–1599.10.2136/sssaj2006.0192Search in Google Scholar

Goebel, M.O., Woche, S.K., Abraham, P.M., Schaumann, G.E., Bachmann, J., 2013. Water repellency enhances the deposition of negatively charged hydrophilic colloids in a water-saturated sand matrix. Colloids Surf. A, 431, 150–160.10.1016/j.colsurfa.2013.04.038Search in Google Scholar

Hallett, P.D., Nunan, N., Douglas, J.T., Young, I.M., 2004. Millimeter-scale spatial variability in soil water sorptivity. Soil Sci. Soc. Am. J., 68, 352–358.10.2136/sssaj2004.3520Search in Google Scholar

Hartge, K.H., 1958. Die Wirkung des Kalkes auf die Strukturstabilität von Ackerböden. [Effect of lime on the soil aggregate stability of arable land]. Dissertation. Department of Horticulture, Technical University of Hannover, Germany. (In German.)Search in Google Scholar

Hassan, M., Woche, S.K., Bachmann, J., 2014. How the root zone modifies soil wettability: Model experiments with alfalfa and wheat. J. Plant Nutr. Soil Sci., 177, 448–458.10.1002/jpln.201300117Search in Google Scholar

Horne, D.J., McIntosh, J.C., 2000. Hydrophobic compounds in sands in New Zealand - extraction, characterisation and proposed mechanisms for repellency expression. J. Hydrol., 231, 35–46.10.1016/S0022-1694(00)00181-5Search in Google Scholar

Imeson, A.C., Verstraten, J.M., van Mulligen, E.J., Sevink, J., 1992. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena, 19, 345–361.10.1016/0341-8162(92)90008-YSearch in Google Scholar

IUSS Working Group WRB, 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.Search in Google Scholar

Karnok, K.A., Rowland, E.J., Tan, K.H., 1993. High pH treatments and the alleviation of soil hydrophobicity on golf greens. Agron. J., 85, 983–986.10.2134/agronj1993.00021962008500050004xSearch in Google Scholar

King, P.M., 1981. Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Austr. J. Soil Res., 19, 275–285.10.1071/SR9810275Search in Google Scholar

Lamparter, A., Bachmann, J., Woche, S.K., 2010. Determination of small-scale spatial heterogeneity of water repellency in sandy soils. Soil Sci. Soc. Am. J., 74, 2010–2012.10.2136/sssaj2010.0082NSearch in Google Scholar

Lamparter, A., Bachmann, J., Woche, S.K., Goebel, M.O., 2014. Biogeochemical interface formation: Wettability affected by organic matter sorption and microbial activity. Vadose Zone J., 13, doi: 10.2136/vzj2013.10.0175.10.2136/vzj2013.10.0175Search in Google Scholar

Lebron, I., Robinson, D.A., Oatham, M., Wuddivira, M.N., 2012. Soil water repellency and pH soil change under tropical pine plantations compared with native tropical forest. J. Hydrol., 414, 194–200.10.1016/j.jhydrol.2011.10.031Search in Google Scholar

Liu, H., Ren, T. Horton, R., Bachmann, J., 2012. Moisture-dependent soil wettability and its influences on soil water retention curve. Soil Sci. Soc. Am. J., 76, 342–349.10.2136/sssaj2011.0081Search in Google Scholar

Muehl, G.J.H., Ruehlmann, J., Goebel, M.O., Bachmann, J., 2012. Application of confocal laser scanning microscopy (CLSM) to visualize the effect of porous media wettability on unsaturated pore water configuration. J. Soils Sediments, 12, 75–85.10.1007/s11368-011-0395-7Search in Google Scholar

Nye, P.H., 1981. Changes of pH across the rhizosphere induced by roots. Plant Soil, 61, 7–26.10.1007/BF02277359Search in Google Scholar

Orfanus, T., Bedrna, Z., Lichner, L., Hallett, P.D., Knava, K., Sebin, M., 2008. Spatial variability of water repellency in a pine forest soil. Soil Water Res., 3, 123–129.10.17221/11/2008-SWRSearch in Google Scholar

Ritsema, C.J., Dekker, L.W., Hendrickx, J.M.H., Hamminga, W., 1993. Preferential flow mechanism in a water repellent sandy soil. Water Resour. Res., 29, 2183–2193.10.1029/93WR00394Search in Google Scholar

Roper, M.M., 2005. Managing soils to enhance the potential for bioremediation of water repellency. Austr. J. Soil Res., 43, 803–810.10.1071/SR05061Search in Google Scholar

Schaumann, G.E., Diehl, D., Bertmer, M., Jaeger, A., Conte, P., Alonzo, G., Bachmann, J., 2013. Combined proton NMR wideline and NMR relaxometry to study SOM–water interactions of cation-treated soils. J. Hydrol. Hydromech., 61, 50–63.10.2478/johh-2013-0007Search in Google Scholar

Snedecor, G.W., Cochran, W.G., 1980. Statistical Methods. 7th ed. The Iowa State University Press, Ames Iowa.Search in Google Scholar

Šolc, R., Tunega, D., Gerzabek, M.H., Woche, S.K., Bachmann, J., 2015. Wettability of organically coated tridymite surface – Molecular dynamics study. Pure Appl. Chem., 87, 405–413.10.1515/pac-2014-1103Search in Google Scholar

Terashima, M., Fukushima, M., Tanaka, S., 2004. Influence of pH on the surface activity of humic acid: micelle-like aggregate formation and interfacial adsorption. Colloids Surf. A, 247, 77–83.10.1016/j.colsurfa.2004.08.028Search in Google Scholar

Tschapek, M., 1984. Criteria for determining the hydrophilicity–hydrophobicity of soils. Z. Pflanzenern. Bodenk., 147, 137–149.10.1002/jpln.19841470202Search in Google Scholar

Wessolek, G., Stoffregen, H., Täumer, K., 2009. Persistency of flow patterns in a water repellent sandy soil – Conclusions of TDR readings and a time-delayed double tracer experiment. J. Hydrol., 375, 524–535.10.1016/j.jhydrol.2009.07.003Search in Google Scholar

Woche, S.K., Goebel, M.O., Kirkham, M.B., Horton, R., van der Ploeg, R.R., Bachmann, J., 2005. Contact angle of soils as affected by depth, texture, and land management. Eur. J. Soil Sci., 56, 239–251.10.1111/j.1365-2389.2004.00664.xSearch in Google Scholar

WorldClim – Global Climate Data, Model e: http://worldclim.org.Search in Google Scholar

Zisman, W.A., 1964. Relation of equilibrium contact angle to liquid and solid construction. In: Gould, R.F. (Ed.): Contact Angle, Wettability and Adhesion. Advan. Chem. Series, 43, Amer. Chem. Soc., Washington, D.C., pp. 1–51.10.1021/ba-1964-0043.ch001Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other