Cite

Abbaspour, K., Schulin, R., van Genuchten, M.Th., 2001. Estimating unsaturated soil hydraulic parameters using ant colony optimization. Adv Water Resour., 24, 827–841.10.1016/S0309-1708(01)00018-5Search in Google Scholar

Abbaspour, K., Johnson, C., van Genuchten, M.Th., 2004. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J., 3, 1340–1352.10.2136/vzj2004.1340Search in Google Scholar

Beck, J., Arnold, K., 1997. Parameter Estimation in Engineering and Science. Wiley Interscience, New York.Search in Google Scholar

Carducci, C.E., de Oliviera, G.C., da Costa, S., Zeviani, W.M., 2011. Modeling the water retention curve in Oxisols using the double van Genuchten equation. R. Bras. Ci. Solo., 35, 77–86. (In Portuguese.)10.1590/S0100-06832011000100007Search in Google Scholar

Dane, J.H., Topp, G.C., 2002. Methods of Soil Analysis, part 4, Physical Methods. Soil Sci. Soc. Am., Madison, WI.10.2136/sssabookser5.4Search in Google Scholar

De Smedt, F., Wierenga, P.J., 1984. Solute transfer through columns of glass beads. Water Resour. Res., 20, 225–232.10.1029/WR020i002p00225Search in Google Scholar

Diamantopoulos, E., Iden, S.C., Durner, W., 2012. Inverse modeling of dynamic nonequilibrium in water flow with an effective approach. Water Resour. Res., 48, W03503, doi: 10.1029/2011WR010717.10.1029/2011WR010717Search in Google Scholar

Franssen, H.J.H., Gómez-Hernández, J.J., Sahuquillo, A., 2003a. Coupled inverse modeling of groundwater flow and mass transport and the worth of concentration data. J. Hydrol., 281, 281–295.10.1016/S0022-1694(03)00191-4Search in Google Scholar

Franssen, H.J.H., Stauffer, F., Kinzelbach, W., 2003b. Joint estimation of transmissivity and recharges-application: Stochastic characterization of well capture zones. J. Hydrol., 294, 1–3, 87–102.10.1016/j.jhydrol.2003.10.021Search in Google Scholar

Fu, J., Gómez-Hernández, J.J., 2009. Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. J. Hydrol., 364, 3–4, 328–341.10.1016/j.jhydrol.2008.11.014Search in Google Scholar

Geweke, J., 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo, J., Berger, J., Dawid, A., Smith, A. (Eds): Bayesian Statistics. Oxford University Press, London.10.21034/sr.148Search in Google Scholar

Goldberg, S., Kabengi, N.J., 2010. Bromide adsorption by reference minerals and soils. Vadose Zone J., 9, 780–786.10.2136/vzj2010.0028Search in Google Scholar

Hastings, W. K., 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika, 57, 97–109.10.1093/biomet/57.1.97Search in Google Scholar

Hosseini, A.H., Deutsch, C.V., Mendoza, C.A., Biggar, K.W., 2011. Inverse modeling for characterization of uncertainty in transport parameters under uncertainty of source geometry in heterogeneous aquifers. J Hydrol., 405, 3–4, 402–416.10.1016/j.jhydrol.2011.05.039Search in Google Scholar

Kaipio, J., Somersalo, E., 2004. Statistical and Computational Inverse Problems. Applied Mathematical Sciences 160, Springer-Verlag.10.1007/b138659Search in Google Scholar

Kaipio, J., Somersalo, E., 2007. Statistical inverse problems: discretization, model reduction and inverse crimes. J. Comp. Appl. Math, 198, 493–504.10.1016/j.cam.2005.09.027Search in Google Scholar

Kohne, J., Mohanty, B., Simunek, J., 2006. Inverse dual-permeability modeling of preferential water flow in a soil column and implications for field-scale solute transport. Vadose Zone J., 5, 59–76.10.2136/vzj2005.0008Search in Google Scholar

Kool, J.B., Parker J.C., van Genuchten, M.T., 1985. Determining soil hydraulic properties from one-step outflow experiments by parameter estimation, I. Theory and numerical studies. Soil Sci. Soc. Am. J., 49, 1348–1354.10.2136/sssaj1985.03615995004900060004xSearch in Google Scholar

Laloy, E., Weynants, M., Bielders, C.L., Vanclooster, M., Javaux, M., 2010. How efficient are one-dimensional models to reproduce the hydrodynamic behavior of structured soils subjected to multi-step outflow experiments. J. Hydrol., 393, 1–2, 37–52, doi: 10.1016/j.jhydrol.2010.02.017.10.1016/j.jhydrol.2010.02.017Search in Google Scholar

Lee, P., 2004. Bayesian Statistics. Oxford University Press, London.Search in Google Scholar

Leij, F.J., Russell, W.B., Lesch, S.M., 1997. Closed-form expressions for water retention and conductivity data. Groundwater, 35, 5, 848–858.10.1111/j.1745-6584.1997.tb00153.xSearch in Google Scholar

Li, L., Zhou, H., Gómez-Hernández, J.J., Franssen, H.J.H., 2012. Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter. J. Hydrol., 428–429, 152–169.10.1016/j.jhydrol.2012.01.037Search in Google Scholar

Maraqa, M.A., Wallace, R.B., Voice, T.C., 1997. Effect of degree of saturation on dispersivity and immobile water in sandy columns. J. Contam. Hydrol., 25, 199–218.10.1016/S0169-7722(96)00032-0Search in Google Scholar

Melamed, R., Jurinak, J.J., Dudley, L.M., 1994. Anion exclusion – pore water velocity interaction affecting transport of bromine through an Oxisol. Soil Sci. Soc. Am. J., 58, 1405–1410.10.2136/sssaj1994.03615995005800050018xSearch in Google Scholar

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E., 1953. Equation of state calculation by fast computing machines. J. Chemical Phys., 21, 1087–1092.10.1063/1.1699114Search in Google Scholar

Miller, C.T., Dawson, C.N., Farthing, M.W., Hou, T.Y., Huang, J., Kees, C.E., Kelley, C.T., Langtangen, H.P., 2013. Numerical simulation of water resources problems: Models, methods, and trends. Adv. Water Resour., 51, 405–437.10.1016/j.advwatres.2012.05.008Search in Google Scholar

Nkedi-Kizza, P., Biggar, J.W., Selim, H.M., van Genuchten, M.Th., Wierenga, P.J., Davidson, J.M., Nielsen, D.R., 1984. On the equivalence of two conceptual models for describing ion exchange during transport through an aggregated oxisol. Water Resour. Res., 20, 8, 1123–1130.10.1029/WR020i008p01123Search in Google Scholar

Orlande, H.R.B., van Genuchten, M.Th., Cotta, R.M., Moreira, P.H., 2009. Bayesian estimation of hydraulic and solute transport parameters from laboratory soil column experiments. In: Proc. Int. Symp. Convective heat and mass transfer in sustainable energy, Hammamet, Tunisia, 20 p.10.1615/ICHMT.2009.CONV.690Search in Google Scholar

Özisik, M.N., Orlande, H.R.B., 2000. Inverse Heat Transfer: Fundamentals and Applications. Taylor and Francis, New York.Search in Google Scholar

Parker, J.C., Kool, J.B., van Genuchten, M.Th., 1985. Determining soil hydraulic properties from one-step outflow experiments by parameter estimation. II. Experimental studies. Soil Sci Soc. Am. J., 49, 1354–1359.10.2136/sssaj1985.03615995004900060005xSearch in Google Scholar

Raithby, G.D., Torrance, K.E., 1974. Upstream-weighted differencing scheme and their application to elliptic problems involving fluid flow. Computers & Fluids, 2, 191–206.10.1016/0045-7930(74)90013-9Search in Google Scholar

Schaap, M.G., Leij, F.J., van Genuchten, M.Th., 2001. Rosetta: A computer program for estimating hydraulic parameters with hierarchical pedotransfer functions. J Hydrol., 251, 163–176.10.1016/S0022-1694(01)00466-8Search in Google Scholar

Si, B.C., Kachanoski, R.G., 2000. Estimating soil hydraulic properties during constant flux infiltration: Inverse procedures. Soil Sci. Soc. Am. J., 64, 2, 439–449.10.2136/sssaj2000.642439xSearch in Google Scholar

Šimůnek, J., Jarvis, N., van Genuchten, M.Th., Gardenas, A., 2003. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol., 272, 14–35.10.1016/S0022-1694(02)00252-4Search in Google Scholar

Šimůnek J., Bradford S.A., 2008. Vadose zone modeling: Introduction and importance. Vadose Zone J., 7, 2, 581–586.10.2136/vzj2008.0012Search in Google Scholar

Šimůnek, J., Šejna, M., Saito, H., Sakai, M., van Genuchten, M. Th., 2013. The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.16, HYDRUS Software Series 3, Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, 340 p. (http://www.pc-progress.com/Downloads/Pgm_hydrus1D/HYDRUS1D-4.16.pdf).Search in Google Scholar

Shackelford, C.D., 1991. Laboratory diffusion testing for waste disposal – A review. J. Contam. Hydrol., 7, 177–217.10.1016/0169-7722(91)90028-YSearch in Google Scholar

Sommer, R., Fölster, H., Vielhauer, K., Maklouf, E.J., Vlek, P.J.G., 2003. Deep soil water dynamics and depletion by secondary vegetation in the Eastern Amazon. Soil Sci. Soc. Am. J., 67, 1672–1686.10.2136/sssaj2003.1672Search in Google Scholar

Spohrer, K., Herrmann, L., Ingwersen, J., Stahr, K., 2006. Applicability of uni- and bimodal retention functions for water flow modeling in a tropical Acrisol. Vadose Zone J., 5, 48–58.10.2136/vzj2005.0047Search in Google Scholar

Tan, S., Fox, C., Nicholls, G., 2006. Inverse Problems. Course Notes for Physics 707. University of Auckland, Auckland.Search in Google Scholar

van Genuchten, M.Th., Wierenga, P.J., 1976. Mass transfer studies in sorbing porous media, I. Analytical solutions. Soil Sci. Soc. Am. J., 40, 4, 473–480.10.2136/sssaj1976.03615995004000040011xSearch in Google Scholar

van Genuchten, M.Th., 1978. Calculating the unsaturated hydraulic conductivity with a new closed-form analytical model. Hydrology Document Number 412. Department of Civil Engeneering, Princeton University, Princeton, New Jersey, USA.Search in Google Scholar

van Genuchten, M.Th., 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 5, 892–898.10.2136/sssaj1980.03615995004400050002xSearch in Google Scholar

van Genuchten, M.Th., Nielsen, D.R., 1985. On describing and predicting the hydraulic properties of unsaturated soils. Annales Geophysicae, 3, 5, 615-628.Search in Google Scholar

Vrugt, J.A., Gupta, H.V., Dekker, S.C., Sorooshian, S., Wagener, T., Bouten, W., 2006. Application of stochastic parameter optimization to the Sacramento soil moisture accounting model. J. Hydrol., 325, 288–307.10.1016/j.jhydrol.2005.10.041Search in Google Scholar

Vrugt, J.A., ter Braak, C.J.F., Diks, C.D.H., Schoups, G., 2013. Hydraulic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications. Adv. Water Res., 51, 457–478.10.1016/j.advwatres.2012.04.002Search in Google Scholar

Xu, T., Gómez-Hernández, J.J., Zhou, H., Li, L., 2013. The power of transient piezometric head data in inverse modeling: An application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field. Adv. Water Res., 53, 100–118.10.1016/j.advwatres.2013.01.006Search in Google Scholar

Yates, S.R., van Genuchten, M.Th., Warrick, A.W., Leij, F.J., 1992. Analysis of measured, predicted, and estimated hydraulic conductivity using the RETC computer program. Soil Sci. Soc. Am. J., 56, 2, 347–354.10.2136/sssaj1992.03615995005600020003xSearch in Google Scholar

Zhou, H., Gómez-Hernández, J.J., Franssen, H.J.H., Li, L., 2011. An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Adv. Water Res., 34, 7, 844–864.10.1016/j.advwatres.2011.04.014Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other