Open Access

On the role of rock fragments and initial soil water content in the potential subsurface runoff formation


Cite

Allaire, S. E., Roulier, S., Cessna, A., 2009. Quantifying preferential flow in soils: A review of different techniques. J. Hydrol., 378, 179-204.10.1016/j.jhydrol.2009.08.013Search in Google Scholar

Beven, K., German, P., 1982. Macropores and water flow in soils. Water Resour. Res., 18, 5, 1311-1325.10.1029/WR018i005p01311Search in Google Scholar

Bičárová, S., Holko, L., 2013. Changes of characteristics of daily precipitation and runoff in the High Tatra Mountains, Slovakia over the last fifty years. Contributions to Geophysics and Geodesy, 43, 2, 157-177.10.2478/congeo-2013-0010Search in Google Scholar

Bouwer, H., Rice, R.C., 1984. Hydraulic properties of stony vadose zones. Ground Water, 22, 6, 696-705.10.1111/j.1745-6584.1984.tb01438.xSearch in Google Scholar

Brakensiek, D.L., Rawls, W.J., Stephenson, G.R., 1986. Determining the saturated hydraulic conductivity of a soil containing rock fragments. Soil Sci. Soc. Am. J., 50, 834-835.10.2136/sssaj1986.03615995005000030053xSearch in Google Scholar

Buchter, B., Hinz, C., Flűhler, H., 1994. Sample size for determination of coarse fragment content in a stony soil. Geoderma, 63, 265−275.10.1016/0016-7061(94)90068-XSearch in Google Scholar

Childs, S.W., Flint, A.L., 1990. Physical properties of forest soils containing rock fragments. In: Gessel, S.P., Lacate, D.S.,Weetman, G.F., Powers, R.F. (Eds.): Sustained productivity of forest soils, Proceedings of the 7th North American forest soils conference. University of British Columbia, Faculty of Forestry Publication, Vancouver, Canada, pp. 95-121.Search in Google Scholar

Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M.A., Basile, A., 2013. Measuring and modeling water content in stony soils. Soil & Tillage Research, 128, 9−22.10.1016/j.still.2012.10.006Search in Google Scholar

Cousin, I., Nicollaud, B., Coutadeur, C., 2003. Influence of rock fragments on the water retention sand and water percolation in a calcareous soil. Catena, 53, 97−114.10.1016/S0341-8162(03)00037-7Search in Google Scholar

Dóša, M., Holko, L., Martincová, M., Danko, M., Kostka, Z., Gomboš, M., 2012. Determination of soil hydraulic conductivity in the mountain catchment by soil texture and field measurements. Acta Hydrologica Slovaca, 13, 2, 350-357. (In Slovak.) Search in Google Scholar

Durner, W., 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res., 30, 211-223.10.1029/93WR02676Search in Google Scholar

Dusek, J., Vogel, T., 2014. Modeling subsurface hillslope runoff dominated by preferential flow: One- vs. twodimensional approximation. Vadose Zone J., 13, doi:10.2136/vzj2013.05.0082.10.2136/vzj2013.05.0082Search in Google Scholar

Fiés, J.C., De Louvigny, N., Chanzy, A., 2002. The role of stones in soil water retention. Eur. J. Soil. Sci., 53, 95-104. 10.1046/j.1365-2389.2002.00431.xSearch in Google Scholar

Hewlett, J.D., Hibbert, A.R., 1967. Factors affecting the response of small watersheds to precipitation in humid areas. In: Proc. International Symposium on Forest Hydrology. Pergamon, Oxford, pp. 275-290.Search in Google Scholar

Holko, L., Kostka, Z., Šanda, M., 2011. Assessment of frequency and areal extent of overland flow generation in a forested mountain catchment. Soil Water Res., 6, 1, 43-53.10.17221/33/2010-SWRSearch in Google Scholar

Hopp, L., McDonnell, J.J., 2009. Connectivity at the hillslope scale: Identifying interactions between storm size, bedrock permeability, slope angle and soil depth. Journal of Hydrology, 376, 378-391.10.1016/j.jhydrol.2009.07.047Search in Google Scholar

Hraško, J., Bedrna, Z., 1988. Applied Soil Science. Priroda Publ. House, Bratislava, 474 p. (In Slovak.) Hrnčíř, M., Šanda, M., Kulasová, A., Císlerová, M., 2010. Runoff formation in a small catchment at hillslope and catchment scales. Hydrol. Process., 24, 2248-2256.10.1002/hyp.7614Search in Google Scholar

Kostka, Z. 2009. Runoff response to rainfall event in the mountain catchment. (In Slovak with English abstract). Acta Hydrologica Slovaca, 10, 1, 130−139.Search in Google Scholar

Lin, H., 2010. Linking principles of soil formation and flow regimes. J. Hydrol., 393, 3-19.10.1016/j.jhydrol.2010.02.013Search in Google Scholar

Lovelland, P.J., Whalley, W.R., 2001. Particle size analysis. In: Smith, K.A., Mullins, C.E. (Eds): Soil and Environmental Analysis Physical Method. Dekker Press, New York, USA.10.1201/9780203908600.ch7Search in Google Scholar

Ma, D.H., Shao, M., 2008. Simulating infiltration into stony soils with a dual-porosity model. Eur. J. Soil Sci., 59, 950-959.10.1111/j.1365-2389.2008.01055.xSearch in Google Scholar

Ma, D. H., Shao, M. A., Zhang, J. B., Wang, Q., J., 2010. Validation of an analytical method for determining soil hydraulic properties of stony soils using experimental data. Geoderma, 159, 262-269.10.1016/j.geoderma.2010.08.001Search in Google Scholar

Mosley, M. P., 1979. Streamflow generation in a forested watershed. Water Resour. Res., 15, 795-806.10.1029/WR015i004p00795Search in Google Scholar

Novák, V., Kňava, K., Šimůnek, J., 2011. Determining the influence of stones on hydraulic conductivity of saturated soils using numerical method. Geoderma, 161, 177-181.10.1016/j.geoderma.2010.12.016Search in Google Scholar

Pavelková, H., Dohnal, M., Vogel, T., 2012. Hillslope runoff generation - comparing different modeling approaches. J. Hydrol. Hydromech., 60, 2, 73-86.10.2478/v10098-012-0007-2Search in Google Scholar

Peck, A.J., Watson, J.D., 1979. Hydraulic conductivity and flow in non-uniform soil. Workshop on soil physics and soil heterogeneity. CSIRO Division of Environmental Mechanics, Canberra, Australia.Search in Google Scholar

Poesen, J., Lavee, H., 1994. Rock fragments in top soils: significance and processes. Catena, 23, 1-28.10.1016/0341-8162(94)90050-7Search in Google Scholar

Ravina, I., Magier, J., 1984. Hydraulic conductivity and water retention of clay soils containing coarse fragments. Soil Sci. Soc. Am. J., 48, 736-740.10.2136/sssaj1984.03615995004800040008xSearch in Google Scholar

Šály, R., 1978. Soil − Basic Component of Forest Production. Priroda Publ. House, Bratislava, 235 p. (In Slovak.) Šanda, M., Císlerová, M., 2009. Transforming hydrographs in the hillslope subsurface. J. Hydrol. Hydromech., 57, 4, 264-275.10.2478/v10098-009-0023-zSearch in Google Scholar

Sauer, T.J., Logsdon, S.D., 2002. Hydraulic and physical properties of stony soils in a small watershed. Soil. Sci. Soc. Am. J., 66, 1947-1956.10.2136/sssaj2002.1947Search in Google Scholar

Schaap, M.G., van Genuchten, M.Th., 2005. A modified Mualem-van Genuchten formulation for improved description of the hydraulic conductivity near saturation. Vadose Zone J., 5, 27-34.10.2136/vzj2005.0005Search in Google Scholar

Shi, Z., Wang, Y., Yu, P., Xu, L., Xiong, W., Guo, H., 2008. Effect of rock fragments on the percolation and evaporation of forest soil in Liupan Mountains, China. Acta Ecologica Sinica, 28, 12, 6090-6098.10.1016/S1872-2032(09)60014-7Search in Google Scholar

Šimůnek, J., Šejna, M., 2007. HYDRUS (2D/3D), Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably- Saturated Media. User Manual, Version 1.02. PC Progress, Prague, Czech Republic, 203 p.Search in Google Scholar

Šimůnek, J., Šejna, M., Saito, H., Sakai, M., van Genuchten, M.Th., 2008. The HYDRUS-1D Software Package for Simulating the One-dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Version 4.0, Hydrus Series 3. Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA, 281 p.10.17221/1200-SWRSearch in Google Scholar

Tani, M., 1997. Runoff generation processes estimated from hydrological observations on a steep forested hillslope with a thin soil layer. J. Hydrol., 200, 84-109.10.1016/S0022-1694(97)00018-8Search in Google Scholar

Tromp-van Meerveld, H.J., McDonnell, J.J., 2006. Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope. Water Resour. Res., 42, W02410, doi: 10.1029/2004WR003778. 10.1029/2004WR003778Search in Google Scholar

van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci.Soc.A.J., 44, 987-996. 10.2136/sssaj1980.03615995004400050002xSearch in Google Scholar

Verbist, K., Baetens, J., Cornelis, W.M., Gabriels, D., Torres, C., Soto, G., 2009. Hydraulic Conductivity as Influenced by Stoniness in Degraded Drylands of Chile. Soil Sci. Soc. Am. J., 73, 2, 471-484.10.2136/sssaj2008.0066Search in Google Scholar

Vogel, T., van Genuchten, M.Th., Cislerová, M., 2001. Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Advances in Water Res., 24, 133-144.10.1016/S0309-1708(00)00037-3Search in Google Scholar

Whipkey, R.Z., 1965. Subsurface stormflow from forested slopes. Bull. Int. Assoc. Sci. Hydrol., 10, 2, 74-85.10.1080/02626666509493392Search in Google Scholar

Zhou, B., Shao, M., Shao, H., 2009. Effects of rock fragments on water movement and solute transport in a Loess Plateau soil. C.R. Geoscience, 341, 462-472. 10.1016/j.crte.2009.03.009Search in Google Scholar

eISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other