Cite

1. Aboyans V, Ricco JB, Bartelink MEL, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2017;00:1-60.Search in Google Scholar

2. Tendera M, Aboyans V, Bartelink ML, et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:2851-2906.10.1093/eurheartj/ehr211Search in Google Scholar

3. Fowkes FG, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382:1329-1340.10.1016/S0140-6736(13)61249-0Search in Google Scholar

4. Lindgren H, Gottsäter A, Qvarfordt P, Bergman S. All Cause Chronic Widespread Pain is Common in Patients with Symptomatic Peripheral Arterial Disease and is Associated with Reduced Health Related Quality of Life. Eur J Vasc Endovasc Surg. 2016;52:205-210.10.1016/j.ejvs.2016.05.004Open DOISearch in Google Scholar

5. Regensteiner JG, Hiatt WR, Coll JR. et al. The impact of peripheral arterial disease on health-related quality of life in the Peripheral Arterial Disease Awareness, Risk, and Treatment: New Resources for Survival (PARTNERS) Program. Vasc Med. 2008;13:15-24.10.1177/1358863X07084911Search in Google Scholar

6. Piepoli MF, Hoes WA, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;37:2315-2381.10.1093/eurheartj/ehw106Search in Google Scholar

7. Belcaro G, Nicolaides AN, Ramaswami G, et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study). Atherosclerosis. 2001;156:379-387.10.1016/S0021-9150(00)00665-1Search in Google Scholar

8. de Weerd M, Greving JP, de Jong AW, Buskens E, Bots ML. Prevalence of asymptomatic carotid artery stenosis according to age and sex: systematic review and metaregression analysis. Stroke. 2009;40:1105-1113.10.1161/STROKEAHA.108.532218Search in Google Scholar

9. Razzouk L, Rockman CB, Patel MR, et al. Co-existence of vascular disease in different arterial beds: peripheral artery disease and carotid artery stenosis—data from Life Line ScreeningVR. Atherosclerosis. 2015;241:687-691.10.1016/j.atherosclerosis.2015.06.029Search in Google Scholar

10. McCarthy WJ, Flinn WR, Yao JS, Williams LR, Bergan JJ. Result of bypass grafting for upper limb ischemia. J Vasc Surg. 1986;3:741-746.10.1016/0741-5214(86)90038-8Search in Google Scholar

11. Olin JW. Thromboangiitis obliterans (Buerger’s disease). N Engl J Med. 2000;343:864-869.10.1056/NEJM20000921343120710995867Search in Google Scholar

12. Papa M, Bass A, Adar R, et al. Autoimmune mechanisms in thromboangiitis obliterans (Buerger’s disease): the role of tobacco antigen and the major histocompatibility complex. Surgery. 1992;111:527-531.Search in Google Scholar

13. Widminsky P, Kohl P, Agewall S, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS) – Web Addenda. Eur Heart J. 2017;00:1-22.Search in Google Scholar

14. Shadman R, Criqui MH, Bundens WP, et al. Subclavian artery stenosis: prevalence, risk factors, and association with cardiovascular diseases. J Am Coll Cardiol. 2004;44:618-623.10.1016/j.jacc.2004.04.044Open DOISearch in Google Scholar

15. Potter BJ, Pinto DS. Subclavian steal syndrome. Circulation. 2014;129:2320-2323.10.1161/CIRCULATIONAHA.113.006653Search in Google Scholar

16. Saha T, Naqvi SY, Ayah OA, et al. Subclavian Artery Disease: Diagnosis and Therapy. Am J Med. 2017;130:409-416.10.1016/j.amjmed.2016.12.027Search in Google Scholar

17. Liew NC, Lee L, Nor Hanipah Z, et al. Pathogenesis and Management of Buerger's Disease. Int J Low Extrem Wounds. 2015;14:231-235.10.1177/1534734615599654Search in Google Scholar

18. Bageacu S, Cerisier A, Isaaz K, Nourissat A, Barral X, Favre JP. Incidental visceral and renal artery stenosis in patients undergoing coronary angiography. Eur J Vasc Endovasc Surg. 2011;41:385-390.10.1016/j.ejvs.2010.11.014Open DOISearch in Google Scholar

19. Hansen KJ1, Edwards MS, Craven TE, et al. Prevalence of renovascular disease in the elderly: a population-based study. J Vasc Surg. 2002;36:443-451.10.1067/mva.2002.127351Search in Google Scholar

20. Rokni N, Salarifar M, Hakki Kazazi E, Goodarzynejad H. Frequency and Predictors of Renal Artery Stenosis in Patients Undergoing Simultaneous Coronary and Renal Catheterization. J Teh Univ Heart Ctr. 2012;7:58-64.Search in Google Scholar

21. Fowkes FG, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382:1329-1340.10.1016/S0140-6736(13)61249-0Search in Google Scholar

22. Patel MR, Conte MS, Cutlip DE, et al. Evaluation and treatment of patients with lower extremity peripheral artery disease: consensus definitions from Peripheral Academic Research Consortium (PARC). J Am Coll Cardiol. 2015;65:931-941.10.1016/j.jacc.2014.12.036487480825744011Search in Google Scholar

23. Dua A, Lee CJ. Epidemiology of Peripheral Arterial Disease and Critical Limb Ischemia. Tech Vasc Interv Radiol. 2016;19:91-95.10.1053/j.tvir.2016.04.00127423989Search in Google Scholar

24. Varu VN, Hogg ME, Kibbe MR. Critical limb ischemia. J Vasc Surg. 2010;51:230-241.10.1016/j.jvs.2009.08.07320117502Open DOISearch in Google Scholar

25. Abu Dabrh AM, Steffen MW, Undavalli C, et al. The natural history of untreated severe or critical limb ischemia. J Vasc Surg. 2015;62:1642-1651.10.1016/j.jvs.2015.07.065Search in Google Scholar

26. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG. Intersociety consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45:S5-S67.10.1016/j.jvs.2006.12.037Search in Google Scholar

27. Criqui MH, Aboyans V. Epidemiology of Peripheral Artery Disease. Circ Res. 2015;116:1509-1526.10.1161/CIRCRESAHA.116.303849Search in Google Scholar

28. Lawall H, Bramlage P, Amann B. Treatment of peripheral arterial disease using stem and progenitor cell therapy. J Vasc Surg. 2011;53:445-453.10.1016/j.jvs.2010.08.060Search in Google Scholar

29. Botham CM, Bennett WL, Cooke JP. Clinical trials of adult stem cell therapy for peripheral artery disease. Methodist Debakey Cardiovasc J. 2013;9:201-205.10.14797/mdcj-9-4-201Search in Google Scholar

30. Hirota K, Semenza GL. Regulation of angiogenesis by hypoxiainducible factor 1. Crit Rev Oncol Hematol. 2006;59:15-26.10.1016/j.critrevonc.2005.12.003Search in Google Scholar

31. Voskuil M, van Royen N, Hoefer I, Buschmann I, Schaper W, Piek JJ. Angiogenesis and arteriogenesis; the long road from concept to clinical application. Ned Tijdschr Geneeskd. 2001;145:670-675.Search in Google Scholar

32. Buschmann I, Schaper W. The pathophysiology of the collateral circulation (arteriogenesis). J Pathol. 2000;190:338-342.10.1002/(SICI)1096-9896(200002)190:3<338::AID-PATH594>3.0.CO;2-7Search in Google Scholar

33. Heilmann C, Beyersdorf F, Lutter G. Collateral growth: cells arrive at the construction site. Cardiovasc Surg. 2002;10:570-578.10.1016/S0967-2109(02)00108-4Search in Google Scholar

34. Heil M, Ziegelhoeffer T, Mees B, Schaper W. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ Res. 2004;94:573-574.10.1161/01.RES.0000124603.46777.EBOpen DOISearch in Google Scholar

35. Kinnaird T, Stabile E, Burnett MS, Epstein SE. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res. 2004;95:354-363.10.1161/01.RES.0000137878.26174.66Search in Google Scholar

36. Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4_hemangiocytes. Nat Med. 2006;12:557-567.10.1038/nm1400275428816648859Search in Google Scholar

37. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964-967.10.1126/science.275.5302.9649020076Search in Google Scholar

38. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107:1164-1169.10.1161/01.CIR.0000058702.69484.A012615796Search in Google Scholar

39. Imanishi T, Hano T, Sawamura T, Nishio I. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin Exp Pharmacol Physiol. 2004;31:407-413.10.1111/j.1440-1681.2004.04022.x15236625Open DOISearch in Google Scholar

40. Kondo T, Hayashi M, Takeshita K, et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol. 2004;24:1442-1447.10.1161/01.ATV.0000135655.52088.c515191940Open DOISearch in Google Scholar

41. Loomans CJ, de Koning EJ, Staal FJ, et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004;53:195-199.10.2337/diabetes.53.1.19514693715Search in Google Scholar

42. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89:E1-E7.10.1161/hh1301.09395311440984Search in Google Scholar

43. Zhu S, Liu X, Li Y, Goldschmidt-Clermont PJ, Dong C. Aging in the atherosclerosis milieu may accelerate the consumption of bone marrow endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27:113-119.10.1161/01.ATV.0000252035.12881.d017095715Open DOISearch in Google Scholar

44. Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. Thromb Haemost. 2010;103:696-709.10.1160/TH09-10-068820174766Search in Google Scholar

45. Sen S, McDonald SP, Coates PT, Bonder CS. Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clin Sci (Lond). 2011;120:263-283.10.1042/CS2010042921143202Search in Google Scholar

46. Barber CL, Iruela-Arispe ML. The ever-elusive endothelial progenitor cell: identities, functions and clinical implications. Pediatr Res. 2006;59:26-32.10.1203/01.pdr.0000203553.46471.1816549545Open DOISearch in Google Scholar

47. Cañizo MC, Lozano F, González-Porras JR, et al. Peripheral endothelial progenitor cells (CD133 _) for therapeutic vasculogenesis in a patient with critical limb ischemia. One year follow-up. Cytotherapy. 2007;9:99-102.10.1080/1465324060103470817354105Search in Google Scholar

48. Kudo FA, Nishibe T, Nishibe M, Yasuda K. Autologous transplantation of peripheral blood endothelial progenitor cells (CD34_) for therapeutic angiogenesis in patients with critical limb ischemia. Int Angiol. 2003;22:344-348.Search in Google Scholar

49. Misra V, Lal A, Khouri RE, Chen PR, Savitz SI. Intra-Arterial Delivery of Cell Therapies for Stroke. Stem Cells Dev. 2012;21:1007-1015.10.1089/scd.2011.0612332876122181047Search in Google Scholar

50. Savitz SI, Misra V, Kasam M, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol. 2011;70:59-69.10.1002/ana.2245821786299Open DOISearch in Google Scholar

51. Battistella V, de Freitas GR, da Fonseca LM, et al. Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen Med. 2011;6:45-52.10.2217/rme.10.9721175286Open DOISearch in Google Scholar

52. Kamiya N, Ueda M, Igarashi H, et al. Intra-arterial transplantation of bone marrow mononuclear cells immediately after reperfusion decreases brain injury after focal ischemia in rats. Life Sci. 2008;83:433-437.10.1016/j.lfs.2008.07.01818727931Open DOISearch in Google Scholar

53. Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20:1311-1319.10.1097/00004647-200009000-0000610994853Search in Google Scholar

54. Moniche F, Gonzalez A, Gonzalez-marcos J-R, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. 2012;43:2242-2244.10.1161/STROKEAHA.112.65940922764211Open DOISearch in Google Scholar

55. Wang QR, Wang BH, Huang YH, Dai G, Li WM, Yan Q. Purification and growth of endothelial progenitor cells from murine bone marrow mononuclear cells. J Cell Biochem. 2008;103:21-29.10.1002/jcb.2137717471503Search in Google Scholar

56. Kim H, Park J, Choi YJ, et al. Bone marrow mononuclear cells have neurovascular tropism and improve diabetic neuropathy. Stem Cells. 2009;27:1686-1696.10.1002/stem.87274656319544451Open DOISearch in Google Scholar

57. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105:369-377.10.1016/S0092-8674(01)00328-2Search in Google Scholar

58. Kumar A, Prasad M, Jali VP, et al. Bone marrow mononuclear cell therapy in ischaemic stroke: a systematic review. Acta Neurol Scand. 2017;135:496-506.10.1111/ane.12666Search in Google Scholar

59. Jeong H, Yim HW, Cho YS, et al. Efficacy and safety of stem cell therapies for patients with stroke: a systematic review and single arm meta-analysis. Int J Stem Cells. 2014;7:63-69.10.15283/ijsc.2014.7.2.63Search in Google Scholar

60. Bhasin A, Srivastava M, Bhatia R, Mohanty S, Kumaran S, Bose S. Autologous intravenous mononuclear stem cell therapy in chronic ischemic stroke. J Stem Cells Regen Med. 2012;8:181-189.10.46582/jsrm.0803011Search in Google Scholar

61. Banerjee S, Bentley P, Hamady M, et al. Intra-arterial immunoselected CD34+ stem cells for acute ischemic stroke. Stem Cells Transl Med. 2014;3:1322-1330.10.5966/sctm.2013-0178Open DOISearch in Google Scholar

62. Lees JS, Sena ES, Egan KJ, et al. Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int J Stroke. 2012;7:582-588.10.1111/j.1747-4949.2012.00797.xOpen DOISearch in Google Scholar

63. Janowski M, Walczak P, Date I. Intravenous route of cell delivery for treatment of neurological disorders: a meta-analysis of preclinical results. Stem Cells Dev. 2010;19:5-16.10.1089/scd.2009.0271Open DOISearch in Google Scholar

64. Willing AE, Lixian J, Milliken M, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73:296-307.10.1002/jnr.10659Search in Google Scholar

65. Yang B, Migliati E, Parsha K, et al. Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke. Stroke. 2013;44:3463-3472.10.1161/STROKEAHA.111.000821Open DOISearch in Google Scholar

66. Bharadvaj BK, Mabon RF, Giddens DP. Steady flow in a model of the human carotid bifurcation. Part I—flow visualization. J Biomech. 1982;15:349-362.10.1016/0021-9290(82)90057-4Open DOISearch in Google Scholar

67. Tanriover N, Kawashima M, Rhoton AL Jr, et al. Microsurgical anatomy of the early branches of the middle cerebral artery: morphometric analysis and classification with angiographic correlation. J Neurosurg. 2003;98:1277-1290.10.3171/jns.2003.98.6.1277Search in Google Scholar

68. Hess DC, Wechsler LR, Clark WM, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16:360-368.10.1016/S1474-4422(17)30046-7Open DOISearch in Google Scholar

69. Prasad K, Sharma A, Garg A, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45:3618-3624.10.1161/STROKEAHA.114.00702825378424Search in Google Scholar

70. van Ramshorst J, Bax JJ, Beeres SL, et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA. 2009;301:1997-2004.10.1001/jama.2009.68519454638Search in Google Scholar

71. De Vriese AS, Billet J, Van Droogenbroeck J, Ghekiere J, De Letter JA. Autologous transplantation of bone marrow mononuclear cells for limb ischemia in a caucasian population with atherosclerosis obliterans. J Int Med. 2008;263:395-403.10.1111/j.1365-2796.2007.01899.x18221334Search in Google Scholar

72. Gyöngyösi M, Hemetsberger R, Wolbank S, et al. Delayed recovery of myocardial blood flow after intracoronary stem cell administration. Stem Cell Rev. 2011;7:616-623.10.1007/s12015-010-9213-721153508Open DOISearch in Google Scholar

73. Gyöngyösi M, Wojakowski W, Lemarchand P, et al. MetaAnalysis of Cellbased CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res. 2015;116:1346-1360.10.1161/CIRCRESAHA.116.304346450979125700037Search in Google Scholar

74. Bura A, Planat-Benard V, Bourin P, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with nonrevascularizable critical limb ischemia. Cytotherapy. 2014;16:245-257.10.1016/j.jcyt.2013.11.01124438903Open DOISearch in Google Scholar

75. Takagi G, Miyamoto M, Tara S, et al. Therapeutic vascular angiogenesis for intractable macroangiopathy-related digital ulcer in patients with systemic sclerosis: a pilot study. Rheumatology (Oxford). 2014;53:854-859.10.1093/rheumatology/ket43224390937Search in Google Scholar

76. Georgiadis GS, Argyriou C, Antoniou GA, et al. Upper limb vascular calcification score as a predictor of mortality in diabetic hemodialysis patients. J Vasc Surg. 2015;61:1529-1537.10.1016/j.jvs.2015.01.02625724616Search in Google Scholar

77. Bae M, Chung SW, Lee CW, Choi J, Song S, Kim S. Upper Limb Ischemia: Clinical Experiences of Acute and Chronic Upper Limb Ischemia in a Single Center. Korean J Thorac Cardiovasc Surg. 2015;48:246-251.10.5090/kjtcs.2015.48.4.246Search in Google Scholar

78. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427-435.10.1016/S0140-6736(02)09670-8Search in Google Scholar

79. Comerota AJ, Link A, Douville J, Burchard ER. Upper extremity ischemia treated with tissue repair cells from adult bone marrow. J Vasc Surg. 2010;52:723-729.10.1016/j.jvs.2010.04.02020576396Open DOISearch in Google Scholar

80. Koshikawa M, Shimodaira S, Yoshioka T, et al. Therapeutic angiogenesis by bone marrow implantation for critical hand ischemia in patients with peripheral arterial disease: a pilot study. Curr Med Res Opin. 2006;22:793-798.10.1185/030079906X100007816684440Open DOISearch in Google Scholar

81. Nevskaya T, Ananieva L, Bykovskaia S, et al. Autologous progenitor cell implantation as a novel therapeutic intervention for ischaemic digits in systemic sclerosis. Rheumatology (Oxford). 2009;48:61-64.10.1093/rheumatology/ken40719022831Search in Google Scholar

82. Lee KB, Kang ES, Kim AK. Stem Cell Therapy in Patients with Thromboangiitis Obliterans: Assessment of the Long-Term Clinical Outcome and Analysis of the Prognostic Factors. International Journal of Stem Cells. Int J Stem Cells. 2011;4:88-98.10.15283/ijsc.2011.4.2.88384096124298340Search in Google Scholar

83. Kim DI, Kim MJ, Joh JH, et al. Angiogenesis facilitated by autologous whole bone marrow stem cell transplantation for Buerger’s disease. Stem Cells. 2006;24:1194-1200.10.1634/stemcells.2005-034916439614Open DOISearch in Google Scholar

84. Durdu S, Akar AR, Arat M, Sancak T, Eren NT, Ozyurda U. Autologous bone-marrow mononuclear cell implantation for patients with Rutherford grade II-III thromboangiitis obliterans. J Vasc Surg. 2006;44:732-739.10.1016/j.jvs.2006.06.02316926085Open DOISearch in Google Scholar

85. Ishida A, Ohya Y, Sakuda H, et al. Autologous peripheral blood mononuclear cell implantation for patients with peripheral arterial disease improves limb ischemia. Circ J. 2005;69:1260-1265.10.1253/circj.69.126016195628Search in Google Scholar

86. Motukuru V, Suresh KR, Vivekanand V, Raj S, Girija KR. Therapeutic angiogenesis in Buerger’s disease (thromboangiitis obliterans) patients with critical limb ischemia by autologous transplantation of bone marrow mononuclear cells. J Vasc Surg. 2008;48:53S-60S.10.1016/j.jvs.2008.09.00519084740Search in Google Scholar

87. Kim DI, Kim MJ, Joh JH, et al. Angiogenesis facilitated by autologous whole bone marrow stem cell transplantation for Buerger's disease. Stem Cells. 2006;24:1194-1200.10.1634/stemcells.2005-034916439614Search in Google Scholar

88. Motukuru V, Suresh KR, Vivekanand V, et al. Therapeutic angiogenesis in Buerger's disease (thromboangiitis obliterans) patients with critical limb ischemia by autologous transplantation of bone marrow mononuclear cells. J Vasc Surg. 2008;48:53S-60S.10.1016/j.jvs.2008.09.00519084740Search in Google Scholar

89. Roussel A, Castier Y, Nuzzo A, et al. Revascularization of acute mesenteric ischemia after creation of a dedicated multidisciplinary center. J Vasc Surg. 2015;62:1251-1256.10.1016/j.jvs.2015.06.20426243208Search in Google Scholar

90. Markel TA, Crisostomo PR, Lahm T, et al. Stem cells as a potential future treatment of pediatric intestinal disorders. J Pediatr Surg. 2008;43:1953-1963.10.1016/j.jpedsurg.2008.06.019258466618970924Open DOISearch in Google Scholar

91. Jensen AR, Doster DL, Hunsberger EB. Human Adipose Stromal Cells Increase Survival and Mesenteric Perfusion Following Intestinal Ischemia and Reperfusion Injury. Shock. 2016;46:75-82.10.1097/SHK.0000000000000571490577926796571Search in Google Scholar

92. Inan M, Bakar E, Cerkezkayabekir A, et al. Mesenchymal stem cells increase antioxidant capacity in intestinal ischemia/reperfusion damage. J Pediatr Surg. 2017;52:1196-1206.10.1016/j.jpedsurg.2016.12.02428118930Open DOISearch in Google Scholar

93. Jiang H, Qu L, Li Y, et al. Bone marrow mesenchymal stem cells reduce intestinal ischemia/reperfusion injuries in rats. J Surg Res. 2011;168:127-134.10.1016/j.jss.2009.07.03519932900Search in Google Scholar

94. van Ampting JM, Penne EL, Beek FJ, et al. Prevalence of atherosclerotic renal artery stenosis in patients starting dialysis. Nephrol Dial Transplant. 2003; 18:1147-1151.10.1093/ndt/gfg12112748348Search in Google Scholar

95. Fatica RA, Port FK, Young EW. Incidence trends and mortality in end-stage renal disease attributed to renovascular disease in the United States. Am J Kidney Dis. 2001;37:1184-1190.10.1053/ajkd.2001.2452111382687Search in Google Scholar

96. Tan J, Wu W, Xu X, et al. Induction therapy with autologous mesenchymal stem cells in living related kidney transplants: a randomized controlled trial. JAMA. 2012;307:1169-1177.10.1001/jama.2012.31622436957Search in Google Scholar

97. Textor SC, Lerman LO. Renal artery stenosis: medical versus interventional therapy. Curr Cardiol Rep. 2013;15:409.10.1007/s11886-013-0409-823990274Search in Google Scholar

98. Sadek EM, Afifi NM, Elfattah LI, Mohsen MA. Histological study on effect of mesenchymal stem cell therapy on experimental renal injury induced by ischemia/reperfusion in male albino rat. Int J Stem Cells. 2013;6:55-66.10.15283/ijsc.2013.6.1.55384100124298374Open DOISearch in Google Scholar

99. Lee P, Chien Y, Chiou G, Lin C, Chiou C, Tarng D. Induced pluripotent stem cells without c-Myc attenuate acute kidney injury via downregulating the signaling of oxidative stress and inflammation in ischemia-reperfusion rats. Cell Transplant. 2012;21:2569-2585.10.3727/096368912X63690222507855Open DOISearch in Google Scholar

100. Humphreys BD, Bonventre JV. Mesenchymal stem cells in acute kidney injury. Medicine. 2008;59:311.10.1146/annurev.med.59.061506.15423917914926Search in Google Scholar

101. Tan J, Wu W, Xu X, et al. Induction therapy with autologous mesenchymal stem cells in living related kidney transplants: a randomized controlled trial. JAMA. 2012;307:1169-1177.10.1001/jama.2012.31622436957Search in Google Scholar

102. Zhu XY, Lerman A, Lerman LO. Concise Review: Mesenchymal Stem Cell Treatment for Ischemic Kidney Disease. Stem Cells. 2013;31:1731-1736.10.1002/stem.1449379581323766020Open DOISearch in Google Scholar

103. Chade AR, Zhu X, Lavi R, et al. Endothelial progenitor cells restore renal function in chronic experimental renovascular disease. Circulation. 2009;119:547-557.10.1161/CIRCULATIONAHA.108.788653275806619153272Search in Google Scholar

104. Chade AR, Zhu XY, Krier JD, et al. Endothelial progenitor cells homing and renal repair in experimental renovascular disease. Stem Cells. 2010;28:1039-1047.10.1002/stem.426295868320506499Open DOISearch in Google Scholar

105. Ebrahimi B, Eirin A, Li Z, et al. Mesenchymal stem cells improve medullary inflammation and fibrosis after revascularization of swine atherosclerotic renal artery stenosis. PLos One. 2013;8:e67474.10.1371/journal.pone.0067474370105023844014Search in Google Scholar

106. Eirin A, Zhu XY, Krier JD, et al. Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells. 2012;30:1030-1041.10.1002/stem.1047369478222290832Open DOISearch in Google Scholar

107. Saad A, Dietz AB, Herrmann SMS, et al. Autologous Mesenchymal Stem Cells Increase Cortical Perfusion in Renovascular Disease. J Am Soc Nephrol. 2017;28:2777-2785.10.1681/ASN.2017020151Search in Google Scholar

108. Benedek T, Kovács I, Benedek I. Therapeutic Angiogenesis for Severely Ischemic Limbs — from Bench to Bedside in Acute Vascular Care. Journal of Cardiovascular Emergencies. 2017;3:160-171.10.1515/jce-2017-0028Search in Google Scholar

109. Kum S, Tan YK, Schreve MA, et al. Midterm Outcomes From a Pilot Study of Percutaneous Deep Vein Arterialization for the Treatment of No-Option Critical Limb Ischemia. J Endovasc Ther. 2017; 24:619-626.10.1177/1526602817719283Search in Google Scholar

110. Chen XP, Fu WM, Gu W. Spinal Cord stimulation for patients with inoperable chronic critical leg ischemia. World J Emerg Med. 2011;2:262-266.10.5847/wjem.j.1920-8642.2011.04.003Search in Google Scholar

111. Compagna R, Amato B, Massa S, et al. Cell Therapy in Patients with Critical Limb Ischemia. Stem Cells Int. 2015;2015:931420.10.1155/2015/931420Search in Google Scholar

112. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427-435.10.1016/S0140-6736(02)09670-8Search in Google Scholar

113. Rigato M, Monami M, Fadini GP. Autologous Cell Therapy for Peripheral Arterial Disease: Systematic Review and Meta-Analysis of Randomized, Nonrandomized, and Noncontrolled Studies. Circ Res. 2017;120:1326-1340.10.1161/CIRCRESAHA.116.30904528096194Search in Google Scholar

114. Procházka V, Gumulec J, Jalůvka F, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19:1413-1424.10.3727/096368910X514170547838220529449Search in Google Scholar

115. Walter DH, Krankenberg H, Balzer JO, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebocontrolled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011;4:26-37.10.1161/CIRCINTERVENTIONS.110.95834821205939Search in Google Scholar

116. Idei N, Soga J, Hata T, et al. Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia: a comparison of atherosclerotic peripheral arterial disease and Buerger disease. Circ Cardiovasc Interv. 2011;4:15-25.10.1161/CIRCINTERVENTIONS.110.95572421205941Search in Google Scholar

117. Das AK, Bin Abdullah BJ, Dhillon SS, Vijanari A, Anoop CH, Gupta PK. Intraarterial allogeneic mesenchymal stem cells for critical limb ischemia are safe and efficacious: report of a phase I study. World J Surg. 2013;37:915-922.10.1007/s00268-012-1892-623307180Search in Google Scholar

118. Jialal I, Devaraj S, Singh U, et al. Decreased number and impaired functionality of endothelial progenitor cells in subjects with metabolic syndrome: implications for increased cardiovascular risk. Atherosclerosis. 2010;211:297-302.10.1016/j.atherosclerosis.2010.01.036290261020171637Search in Google Scholar

119. Fadini GP, Sartore S, Albiero M, et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol. 2006;26:2140-2146.10.1161/01.ATV.0000237750.44469.8816857948Open DOISearch in Google Scholar

120. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89:1-7.10.1161/hh1301.09395311440984Search in Google Scholar

eISSN:
2501-8132
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Internal Medicine, Surgery, Emergency Medicine and Intensive-Care Medicine