Open Access

Recent Advances in Biomarker Discovery — from Serum to Imaging-based Biomarkers for a Complex Assessment of Heart Failure Patients


Cite

1. Maisel A, Mueller C, Nowak R, et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol. 2010;55:2062-2076.10.1016/j.jacc.2010.02.02520447528Search in Google Scholar

2. Januzzi JL Jr, Rehman SU, Mohammed AA, et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol. 2011;58:1881-1889.10.1016/j.jacc.2011.03.07222018299Search in Google Scholar

3. Ndumele CE, Matsushita K, Sang Y, et al. N-Terminal Pro-Brain Natriuretic Peptide and Heart Failure Risk Among Individuals With and Without Obesity: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 2016;133:631-638.10.1161/CIRCULATIONAHA.115.017298475886326746175Search in Google Scholar

4. Wang YC, Yu CC, Chiu FC, et al. Soluble ST2 as a biomarker for detecting stable heart failure with a normal ejection fraction in hypertensive patients. J Card Fail. 2013;19:163-168.10.1016/j.cardfail.2013.01.01023482076Search in Google Scholar

5. Bayes-Genis A, de Antonio M, Vila J, et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 versus galectin-3. J Am Coll Cardiol. 2014;63:158-166.10.1016/j.jacc.2013.07.08724076531Search in Google Scholar

6. Gaggin HK, Szymonifka J, Bhardwaj A, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014;2:65-72.10.1016/j.jchf.2013.10.00524622120Search in Google Scholar

7. Zhu ZD, Sun T. Association between growth differentiation factor-15 and chronic heart failure in coronary atherosclerosis patients. Genet Mol Res. 2015;14:2225-2233.10.4238/2015.March.27.825867369Search in Google Scholar

8. Mueller T, Leitner I, Egger M. Association of the biomarkers soluble ST2, galectin-3 and growth-differentiation factor-15 with heart failure and other non-cardiac diseases. Clin Chim Acta. 2015;445:155-160.10.1016/j.cca.2015.03.03325850080Search in Google Scholar

9. Chan MM, Santhanakrishnan R, Chong JP, et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2016;18(1):81-88.10.1002/ejhf.43126497848Search in Google Scholar

10. Scharnagl H, Kleber ME, Genser B, et al. Association of myeloperoxidase with total and cardiovascular mortality in individuals undergoing coronary angiography--the LURIC study. Int J Cardiol. 2014;174:96-105.10.1016/j.ijcard.2014.03.168404519024746542Search in Google Scholar

11. Gedikli O, Kiris A, Hosoglu Y, et al. Serum myeloperoxidase level is associated with heart-type fatty acid-binding protein but not troponin T in patients with chronic heart failure. Med Princ Pract. 2015;24:42-46.10.1159/000368717558819625402608Search in Google Scholar

12. Schiele F, Meneveau N, Seronde MF, et al. C-reactive protein improves risk prediction in patients with acute coronary syndromes. Eur Heart J. 2010;31:290-297.10.1093/eurheartj/ehp27319578164Search in Google Scholar

13. Parrinello CM, Lutsey PL, Ballantyne CM, et al. Six-year change in high-sensitivity C-reactive protein and risk of diabetes, cardiovascular disease, and mortality. Am Heart J. 2015;170:380-389.10.1016/j.ahj.2015.04.017454885726299237Search in Google Scholar

14. Aulin J, Siegbahn A2, Hijazi Z, et al. Interleukin-6 and C-reactive protein and risk for death and cardiovascular events in patients with atrial fibrillation. Am Heart J. 2015;170:1151-1160.10.1016/j.ahj.2015.09.01826678637Search in Google Scholar

15. Canada JM, Fronk DT, Cei LF, et al. Usefulness of C-Reactive Protein Plasma Levels to Predict Exercise Intolerance in Patients With Chronic Systolic Heart Failure. Am J Cardiol. 2016;117:116-120.10.1016/j.amjcard.2015.10.02026546248Search in Google Scholar

16. Kozdağ G, Ertaş G, Kiliç T, et al. Elevated level of high-sensitivity C-reactive protein is important in determining prognosis in chronic heart failure. Med Sci Monit. 2010;16:CR156-161.Search in Google Scholar

17. Schmalgemeier H, Bitter T, Fischbach T, et al. C-reactive protein is elevated in heart failure patients with central sleep apnea and Cheyne-Stokes respiration. Respiration. 2014;87:113-120.10.1159/00035111523988380Search in Google Scholar

18. Ataoğlu HE, Yilmaz F, Uzunhasan I, et al. Procalcitonin: a novel cardiac marker with prognostic value in acute coronary syndrome. J Int Med Res. 2010;38:52-61.10.1177/14732300100380010620233513Search in Google Scholar

19. Kelly D, Khan SQ, Dhillon O, et al. Procalcitonin as a prognostic marker in patients with acute myocardial infarction. Biomarkers. 2010;15:325-331.10.3109/1354750100367508420214413Search in Google Scholar

20. Sinning CR, Sinning JM, Schulz A, et al.; Association of serum procalcitonin with cardiovascular prognosis in coronary artery disease. Circ J. 2011;75:1184-1191.10.1253/circj.CJ-10-0638Search in Google Scholar

21. Schiopu A, Hedblad B, Engström G, et al. Plasma procalcitonin and the risk of cardiovascular events and death: a prospective population-based study. J Intern Med. 2012;272:484-491.10.1111/j.1365-2796.2012.02548.x22530956Search in Google Scholar

22. Canbay A, Celebi OO, Celebi S, et al. Procalcitonin: a marker of heart failure. Acta Cardiol. 2015;70(4):473-478.10.1080/AC.70.4.309689626455251Search in Google Scholar

23. Loncar G, Tscholl V, Tahirovic E, et al. Should procalcitonin be measured routinely in acute decompensated heart failure. Biomark Med. 2015;9:651-659.10.2217/bmm.15.2926174839Search in Google Scholar

24. Wang W, Zhang X, Ge N, et al. Procalcitonin testing for diagnosis and short-term prognosis in bacterial infection complicated by congestive heart failure: a multicenter analysis of 4,698 cases. Crit Care. 2014;18:R4.10.1186/cc13181405610524393388Search in Google Scholar

25. Alba GA, Truong QA, Gaggin HK, et al. Diagnostic and Prognostic Utility of Procalcitonin in Patients Presenting to the Emergency Department with Dyspnea. Am J Med. 2016;129:96-104.10.1016/j.amjmed.2015.06.03726169892Search in Google Scholar

26. Schuetz P, Kutz A, Grolimund E, et al. Excluding infection through procalcitonin testing improves outcomes of congestive heart failure patients presenting with acute respiratory symptoms: results from the randomized ProHOSP trial. Int J Cardiol. 2014;175:464-472.10.1016/j.ijcard.2014.06.02225005339Search in Google Scholar

27. Pascual-Figal DA, Manzano-Fernández S, Boronat M, et al. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur J Heart Fail. 2011;13:718-725.10.1093/eurjhf/hfr04721551163Search in Google Scholar

28. Pascual-Figal DA, Casas T, Ordonez-Llanos J, et al. Highly sensitive troponin T for risk stratification of acutely destabilized heart failure. Am Heart J. 2012;163:1002-1010.10.1016/j.ahj.2012.03.01522709753Search in Google Scholar

29. Grodin JL, Neale S, Wu Y, et al. Prognostic comparison of different sensitivity cardiac troponin assays in stable heart failure. Am J Med. 2015;128:276-282.10.1016/j.amjmed.2014.09.029434072225447612Search in Google Scholar

30. Haaf P, Reichlin T, Twerenbold R. Risk stratification in patients with acute chest pain using three high-sensitivity cardiac troponin assays. Eur Heart J. 2014;35:365-375.10.1093/eurheartj/eht21823821402Search in Google Scholar

31. Hendgen-Cotta UB, Kelm M, Rassaf T. Myoglobin functions in the heart. Free Radic Biol Med. 2014;73:252-259.10.1016/j.freeradbiomed.2014.05.00524859377Search in Google Scholar

32. Wang Q, Liu F, Yang X, et al. Sensitive point-of-care monitoring of cardiac biomarker myoglobin using aptamer and ubiquitous personal glucose meter. Biosens Bioelectron. 2015;64:161-164.10.1016/j.bios.2014.08.07925216451Search in Google Scholar

33. Lee HY, Choi JS, Guruprasath P, et al. An Electrochemical Biosensor Based on a Myoglobin-specific Binding Peptide for Early Diagnosis of Acute Myocardial Infarction. Anal Sci. 2015;31:699-704.10.2116/analsci.31.69926165294Search in Google Scholar

34. Li X, Luo R, Jiang R, et al. The prognostic use of serum concentrations of cardiac troponin-I, CK-MB and myoglobin in patients with idiopathic dilated cardiomyopathy. Heart Lung. 2014;43:219-224.10.1016/j.hrtlng.2014.03.00124794782Search in Google Scholar

35. Polat V, Bozcali E, Uygun T, et al. Diagnostic significance of serum galectin-3 levels in heart failure with preserved ejection fraction. Acta Cardiol. 2016;71:191-197.10.1080/AC.71.2.3141849Search in Google Scholar

36. Schindler EI, Szymanski JJ, Hock KG, et al. Short- and Long-term Biologic Variability of Galectin-3 and Other Cardiac Biomarkers in Patients with Stable Heart Failure and Healthy Adults. Clin Chem. 2016;62:360-366.10.1373/clinchem.2015.24655326546635Search in Google Scholar

37. Song X, Qian X, Shen M, et al. Protein kinase C promotes cardiac fibrosis and heart failure by modulating galectin-3 expression. Biochim Biophys Acta. 2015;1853:513-521.10.1016/j.bbamcr.2014.12.00125489662Search in Google Scholar

38. Yu X, Sun Y, Zhao Y, et al. Prognostic value of plasma galectin-3 levels in patients with coronary heart disease and chronic heart failure. Int Heart J. 2015;56:314-318.10.1536/ihj.14-30425902879Search in Google Scholar

39. Lai KB, Sanderson JE, Izzat MB, et al. Micro-RNA and mRNA myocardial tissue expression in biopsy specimen from patients with heart failure. Int J Cardiol. 2015;199:79-83.10.1016/j.ijcard.2015.07.04326188824Search in Google Scholar

40. Devaux Y, Vausort M, McCann GP, et al. A Panel of 4 microRNAs Facilitates the Prediction of Left Ventricular Contractility after Acute Myocardial Infarction. PLoS One. 2013;8:e70644.10.1371/journal.pone.0070644374277623967079Search in Google Scholar

41. Kumarswamy R, Bauters C, Volkmann I, et al. Brief UltraRapid Communication (Clinical Track) Circulating Long Noncoding RNA, LIPCAR, Predicts Survival in Patients With Heart Failure. Circulation Research. 2014;114:1569-1575.10.1161/CIRCRESAHA.114.30391524663402Search in Google Scholar

42. Gu YL, Voors AA, Zijlstra F, et al. Comparison of the temporal release pattern of copeptin with conventional biomarkers in acute myocardial infarction. Clin Res Cardiol. 2011;100:1069-1076.10.1007/s00392-011-0343-y322282721766239Search in Google Scholar

43. Meune C, Zuily S, Wahbi K, et al. Combination of copeptin and high-sensitivity cardiac troponin T assay in unstable angina and non-ST-segment elevation myocardial infarction: a pilot study. Arch Cardiovasc Dis. 2011;104:4-10.10.1016/j.acvd.2010.11.00221276572Search in Google Scholar

44. Pozsonyi Z, Förhécz Z, Gombos T. Copeptin (C-terminal pro arginine-vasopressin) is an independent long-term prognostic marker in heart failure with reduced ejection fraction. Heart Lung Circ. 2015;24:359-367.10.1016/j.hlc.2014.10.00825618448Search in Google Scholar

45. Vizzardi E, Bonadei I, Sciatti E, et al. Quantitative analysis of right ventricular (RV) function with echocardiography in chronic heart failure with no or mild RV dysfunction: comparison with cardiac magnetic resonance imaging. J Ultrasound Med. 2015;34:247-255.10.7863/ultra.34.2.24725614398Search in Google Scholar

46. Pellicori P, Zhang J, Lukaschuk E, et al. Left atrial function measured by cardiac magnetic resonance imaging in patients with heart failure: clinical associations and prognostic value. Eur Heart J. 2015;36:733-742.10.1093/eurheartj/ehu40525336215Search in Google Scholar

47. Won E, Donnino R, Srichai MB, et al. Diagnostic Accuracy of Cardiac Magnetic Resonance Imaging in the Evaluation of Newly Diagnosed Heart Failure With Reduced Left Ventricular Ejection Fraction. Am J Cardiol. 2015;116:1082-1087.10.1016/j.amjcard.2015.06.032456794026251006Search in Google Scholar

48. Bellevre D, Manrique A, Legallois D, et al. First determination of the heart-to-mediastinum ratio using cardiac dual isotope (123I-MIBG/99mTc-tetrofosmin) CZT imaging in patients with heart failure: the ADRECARD study. Eur J Nucl Med Mol Imaging. 2015;42:1912-1919.10.1007/s00259-015-3141-326227533Search in Google Scholar

49. Narula J, Gerson M, Thomas GS, et al. 123I-MIBG Imaging for Prediction of Mortality and Potentially Fatal Events in Heart Failure: The ADMIRE-HFX Study. J Nucl Med. 2015;56:1011-1018.10.2967/jnumed.115.15640626069309Search in Google Scholar

50. Rommel KP, von Roeder M, Latuscynski K, et al. Extracellular Volume Fraction for Characterization of Patients With Heart Failure and Preserved Ejection Fraction. J Am Coll Cardiol. 2016;67:1815-1825.10.1016/j.jacc.2016.02.01827081022Search in Google Scholar

eISSN:
2501-8132
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Internal Medicine, Surgery, Emergency Medicine and Intensive-Care Medicine