Cite

1. Sarma NJ, Tiriveedhi V, Ramachandran S, Crippin J, Chapman W, Mohanakumar T. Modulation of immune responses following solid organ transplantation by microRNA. Exp Mol Pathol. 2012;93:378-385.10.1016/j.yexmp.2012.09.020351868523036474Search in Google Scholar

2. Mitropoulos F, Odim J, Marelli D, et al. Outcome of hearts with cold ischemic time greater than 300 minutes. A case-matched study. Eur J Cardiothorac Surg. 2005;28:143-148.10.1016/j.ejcts.2005.01.06715982597Search in Google Scholar

3. Bittner HB, Boyer JH, Ledzian B, Moro RJ, Pelaez A. Unusual Indication for Extracorporeal Membrane Oxygenation Immediately After Successful Sequential Bilateral Lung Transplantation: A Case Report. Transplant Proc. 2015;47(3):849-851.10.1016/j.transproceed.2014.12.01525724253Search in Google Scholar

4. Xiang Y, Piao SG, Zou HB, et al. L-carnitine protects against cyclosporine-induced pancreatic and renal injury in rats. Transplant Proc. 2013;45:3127-3134.10.1016/j.transproceed.2013.08.04124157049Search in Google Scholar

5. Ghadie MM, Miranda-Ferreira R, Taha NS, et al. Study of Heparin in Intestinal Ischemia and Reperfusion in Rats: Morphologic and Functional Evaluation. Transplant Proc. 2012;44:2300-2303.10.1016/j.transproceed.2012.07.05523026579Search in Google Scholar

6. Douglas JJ, Walley KR. Metabolic changes in cardiomyocytes during sepsis. Crit Care. 2013;17(5):186.10.1186/1364-8535-17-186Search in Google Scholar

7. Sun WH, Liu F, Chen Y, Zhu YC. Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion. Biochem Biophys Res Commun. 2012;421:164-169.10.1016/j.bbrc.2012.03.12122503984Search in Google Scholar

8. Somaio Neto F, Ikejiri AT, Bertoletto PR, et al. Gene expression related to oxidative stress in the heart of mice after intestinal ischemia. Arq Bras Cardiol. 2014;102:165-173.Search in Google Scholar

9. Wang L, Huang H, Fan Y, et al. Effects of Downregulation of MicroRNA-181a on H2O2-Induced H9c2 Cell Apoptosis via the Mitochondrial Apoptotic Pathway. Oxid Med Cell Longev. 2014;2014:960362.10.1155/2014/960362394239424683439Search in Google Scholar

10. Xie H, Liu Q, Qiao S, Jiang X, Wang C. Delayed cardioprotection by sevoflurane preconditioning: a novel mechanism via inhibiting Beclin 1-mediated autophagic cell death in cardiac myocytes exposed to hypoxia/reoxygenation injury. Int J Clin Exp Pathol. 2015;8:217-226.Search in Google Scholar

11. Agarwal B, Stowe DF, Dash RK, Bosnjak ZJ, Camara AKS. Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Front Physiol. 2014;5:1-17.10.3389/fphys.2014.00341416527825278902Search in Google Scholar

12. Tao X, Lu L, Xu Q, Li S, Lin M. Cardioprotective effects of anesthetic preconditioning in rats with ischemia-reperfusion injury: propofol versus isoflurane. J Zhejiang Univ Sci B. 2009;10:740-747.10.1631/jzus.B0920119275988019816998Search in Google Scholar

13. Benedek O, Veres M, Dobreanu M. Neutrophil Viability as a Clinical Outcome Marker in Mechanically Ventilated Critically Ill Trauma Patients : A Case Series. JCCM. 2015;1:113-117.10.1515/jccm-2015-0019Search in Google Scholar

14. Tanaka S, Ishikawa M, Arai M, Genda Y, Sakamoto A. Changes in microRNA expression in rat lungs caused by sevoflurane anesthesia: a TaqMan® low-density array study. Biomed Res. 2012;33:255-263.10.2220/biomedres.33.255Search in Google Scholar

15. Riess ML, Stowe DF, Warltier DC. Cardiac pharmacological preconditioning with volatile anesthetics: from bench to bedside? Am J Physiol Heart Circ Physiol. 2004;286:H1603-H1607.10.1152/ajpheart.00963.2003Search in Google Scholar

16. Khalifa OSM, Hassanin AAM. Melatonin, ketamine and their combination in half doses for management of sevoflurane agitation in children undergoing adenotonsillectomy. Egypt J Anaesth. 2013;29:337-341.10.1016/j.egja.2013.05.006Search in Google Scholar

17. Karci A, Duru S, Hepağuşlar H, Ciftçi L, Yilmaz O. Comparison of the effect of sevoflurane and propofol on oxygenation during gradual transition to one-lung ventilation. Brazilian J Anesthesiol. 2014;64:79-83.10.1016/j.bjan.2013.03.003Search in Google Scholar

18. Otsuki T, Ishikawa M, Hori Y, Goto G, Sakamoto A. Volatile anesthetic sevoflurane ameliorates endotoxininduced acute lung injury via microRNA modulation in rats. Biomed Reports. 2015;3:408-412.10.3892/br.2015.428Search in Google Scholar

19. Kothari D, Bindal J. Impact of obstetric analgesia (regional vs parenteral) on progress and outcome of labour: A review. Rom J Anaesth Int Care. 2011;18:34-40.Search in Google Scholar

20. Allaouchiche B, Debon R, Goudable J, Chassard D, Duflo F. Oxidative Stress Status During Exposure to Propofol, Sevoflurane and Desflurane. Anesth Analg. 2001;93:981-985.10.1097/00000539-200110000-00036Search in Google Scholar

21. Lee Y, Song BC, Yeum K. Impact of Volatile Anesthetics on Oxidative Stress and Inflammation. Biomed Res Int. 2015;2015:24270910.1155/2015/242709Search in Google Scholar

22. Kotani N, Akaike N. The effects of volatile anesthetics on synaptic and extrasynaptic GABA-induced neurotransmission. Brain Res Bull. 2013;93:69-79.10.1016/j.brainresbull.2012.08.001Search in Google Scholar

23. Nigro Neto C, Tardelli MA, Paulista PHD. Use of Volatile Anesthetics in Extracorporeal Circulation. Rev Bras Anestesiol. 2012;62:346-355.10.1016/S0034-7094(12)70135-6Search in Google Scholar

24. De Conno E, Steurer MP, Wittlinger M, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110:1316-1326.10.1097/ALN.0b013e3181a1073119417610Search in Google Scholar

25. Lamberts RR, Onderwater G, Hamdani N, et al. Reactive oxygen species-induced stimulation of 5’amp-activated protein kinase mediates sevoflurane-induced cardioprotection. Circulation. 2009;120(11Suppl):S10-5.10.1161/CIRCULATIONAHA.108.82842619752353Search in Google Scholar

26. Schrammel A, Mussbacher M, Winkler S, et al. Cardiac oxidative stress in a mouse model of neutral lipid storage disease. Biochim Biophys Acta. 2013;1831:1600-1608.10.1016/j.bbalip.2013.07.004379545423867907Search in Google Scholar

27. Qin Z, Lv E, Zhan L, Xing X, Jiang J, Zhang M. Intravenous pretreatment with emulsified isoflurane preconditioning protects kidneys against ischemia / reperfusion injury in rats. BMC Anesthesiol. 2014;14:28.10.1186/1471-2253-14-28399616224739487Search in Google Scholar

28. Brown D, Lynch JM, Armstrong CJ, et al. Susceptibility of the heart to ischaemia-reperfusion injury and exercise-induced cardioprotection are sex-dependent in the rat. J Physiol. 2005;564:619–630.10.1113/jphysiol.2004.081323146444215718263Search in Google Scholar

29. Tao L, Gao E, Jiao X, et al. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation. 2007;115:1408-1416.10.1161/CIRCULATIONAHA.106.66694117339545Search in Google Scholar

30. Liu AH, Bao YM, Wang XY, Zhang ZX. Cardio-Protection by Ginkgo biloba Extract 50 in Rats with Acute Myocardial Infarction is Related to Na+–Ca2+ Exchanger. Am J Chin Med. 2013;41:789-800.10.1142/S0192415X1350053523895152Search in Google Scholar

31. Curtis MJ, Walker MJA. Quantification of arrhythmias using scoring systems: an examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovasc Res. 1988;22:656-665.10.1093/cvr/22.9.6563242835Search in Google Scholar

32. Lai CC, Tang CY, Chiang SC, Tseng KW, Huang CH. Ischemic preconditioning activates prosurvival kinases and reduces myocardial apoptosis. J Chin Med Assoc. 2015;78:460-468.10.1016/j.jcma.2015.04.00626071976Search in Google Scholar

33. Yu CJ, Ko CJ, Hsieh CH, et al. Proteomic analysis of osteoarthritic chondrocyte reveals the hyaluronic acid-regulated proteins involved in chondroprotective effect under oxidative stress. J Proteomics. 2014;99:40-53.10.1016/j.jprot.2014.01.01624480285Search in Google Scholar

34. Wang Y, Yang R, Gu J, et al. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging. 2015;36:188-200.10.1016/j.neurobiolaging.2014.07.035Search in Google Scholar

35. Galli D, Carubbi C, Masselli E, et al. PKCε is a negative regulator of PVAT-derived vessel formation. Exp Cell Res. 2015;330:277-286.10.1016/j.yexcr.2014.11.011Search in Google Scholar

36. Kojima A, Kitagawa H, Omatsu-Kanbe M, Matsuura H, Nosaka S. Sevoflurane protects ventricular myocytes against oxidative stress-induced cellular Ca2+ overload and hypercontracture. Anesthesiology. 2013;119:606-620.10.1097/ALN.0b013e318292ee52Search in Google Scholar

37. Kersten JR, Brayer AP, Pagel PS, Tessmer JP, Warltier DC. Perfusion of Ischemic Myocardium during Anesthesia with Sevoflurane. Anesthesiology. 1994;81:995-1004.10.1097/00000542-199410000-00027Search in Google Scholar

38. Nunes RR, Duval Neto GF, Garcia de Alencar JC, et al. Anesthetics, Cerebral Protection and Preconditioning. Rev Bras Anestesiol. 2013;63:119-138.10.1016/S0034-7094(13)70204-6Search in Google Scholar

39. Schlack W, Preckel B, Stunneck D, Thämer V. Effects of halothane, enflurane, isoflurane, sevoflurane and desflurane on myocardial reperfusion injury in the isolated rat heart. Br J Anaesth. 1998;81:913-919.10.1093/bja/81.6.91310211019Search in Google Scholar

40. Uecker M, Da Silva R, Grampp T, Pasch T, Schaub MC, Zaugg M. Translocation of Protein Kinase C Isoforms to Subcellular Targets in Ischemic and Anesthetic Preconditioning. Anesthesiology. 2003;99:138-147.10.1097/00000542-200307000-0002312826853Search in Google Scholar

eISSN:
2501-8132
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Internal Medicine, Surgery, Emergency Medicine and Intensive-Care Medicine