Open Access

High conversion efficiency of crystalline Si solar cells using black − Si fabricated by SSCT method


Cite

[1] J. M. Shim, H. W. Lee, K. Y. Cho, J. K. Seo, J. S. Kim, E. J. Lee, J. Y. Choi, D. J. Oh, J. E. Shin, J. S. Kim, J. H. Kong, S. H. Lee and H. S. Lee, “17. 6% Conversion Efficiency Multicrystalline Silicon Solar Cells Using the Reactive Ion Etching with the Damage Removal Etching”, Int. J. Photoenergy, 2012 (2012) 24818216.Search in Google Scholar

[2] P. Repo, J. Benick, V. Vhnissi, J. Sehn, G. V. Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle and H. Savin, “N Type Black Silicon Solar Cells”, Energy Procedia, 38 (2013) 866871.Search in Google Scholar

[3] R. S. Davidsen, H. Li, A. To, X. Wang, A. Han, J. An, J. Colwell, C. Chan, A. Wenham, M. S. Schmidt, A. Boisen, O. Hansen, S. Wenham and A. Barnett, “Black Silicon Laser Doped Selective Emitter Solar Cell with 18. 1% Efficiency”,, Sol.Energy Mater.Sol.Cells 144 (2016) 740747.Search in Google Scholar

[4] H. Savin, P. Repo, G. V. Gastrow, P. Ortega, E. Calle, M. Garin and R. Alcubilla, “Black Silicon Solar Cells with interdigitated Back Contacts Achieve 22. 1% Efficiency”, Nature Nanotech. 10 (2015) 624628.Search in Google Scholar

[5] J. Oh, H. C. Yuan and H. M. Branz, “An 18. 2 % Efficient Black Silicon Solar Cell Achieved Through Control of Carrier Recom-bination Nanostructures”, Nature Nanotech. 7 (2012) 743748.Search in Google Scholar

[6] D. Z. Dimitre and C. H. Du, “Crystalline Silicon Solar Cells with Micro/Nano Texture”, Appl.Surf.Sci. 266 (2013) 14.Search in Google Scholar

[7] L. Yang, Y. Liu, Y. Wang, X. Li, W. Chen, Y. Hua, Q. Zhang, J. Fu, H. Liang, Z. Mei and X. Du, “Optimization of Silicon Pyramidal Emitter by Self Selective Ag Assisted Chemical Etching”, Rsc Adv. 4 (2014) 2445824462.Search in Google Scholar

[8] W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang, M. J. Yang, B. Tjahjono, J. J. Huang, W. C. Hsu and M. J. Chen, “Surface Passivation of Efficient Nanotextured Black Silicon Solar Cells Using thermal Atomic Layer Deposition”, Acs Appl. Mater. interfaces, 5 (2013) 97529759.Search in Google Scholar

[9] Z. Zhao, P. Li, Y. Wei, C. Lu, X. Tan and A. Liu, “17. 3% Efficient Black Silicon Solar Cell without Dielectric Antireflection Coating”, Sol.Energy 110 (2014) 714719.Search in Google Scholar

[10] F. Toor, H. M. Branz, M. R. Page, K. M. Jones and H. C. Yuan, “Multi-scale Surface Texture To Improve Blue Response of Nanoporous Black Silicon Solar Cells Appl.Phys.Lett. 99 (2011) 10350113.Search in Google Scholar

[11] R. R. Bilyalov, R. Ldemann, W. Wettling, L. Stalmans, J. Poort-mans, J. Nijs, L. Schirone, G. Sotgiu, S. Strehlke and C. Levy-clement, “Multicrystalline Silicon Solar Cells with Porous Silicon Emitter”, Sol. Ener. Mater. Sol. Cells, 60 (2000) 391420.Search in Google Scholar

[12] L. Stalmans, J. Poortmans, H. Bender, M. Caymax, K. Said, E. Vazsonyi, J. Nijs and R. Mertens, “Porous Silicon Crystalline Silicon Solar Cells: A Review and the Effect on the Internal Quantum Efficiency”, Prog.Photovolt. Res. Appl. 6 (1998) 233246.Search in Google Scholar

[13] M. B. Rabha and B. Bessais, “Enhancement of Photovoltaic Properties of Multicrystalline Silicon Solar Cells by Combination of Buried Metallic Contacts and Thin Porous Silicon”, Sol.Energy 84 (2010) 486491.Search in Google Scholar

[14] K. Imamura, T. Nonaka, D. Irishika and H. Kobayashi, “Ultralow Reflectivity and Light Trapping For Crystalline Si Solar Cells by Use of Surface Structure Chemical Transfer Method on Pyramidal Textured Surfaces”, Ecs Solid State Lett. 4 (2015) Q63Q65.10.1149/2.0091512sslSearch in Google Scholar

[15] D. Irishika, K. Imamura and H. Kobayashi, “Ultralow Reflectivity Surfaces by Formation of Nanocrystalline Si Layer For Crystalline Si Solar Cells”, Sol. Energ. Mat. Sol. Cells 141 (2015) 16.Search in Google Scholar

[16] K. Imamura, D. Irishika and H. Kobayashi, “Surface Nanocrystalline Si Structure and Its Surface Passivation For Highly Efficient Black Si Solar Cells”, Prog. Photovol. in Press.Search in Google Scholar

[17] J. Shi, F. Xu, Z. Ma, P. Zhou, L. Zheng, J. Yang, D. Chen and Z. Jiang, “Nanoporous Black MultiCrystalline Silicon Solar Cells: Realization of Low Reflectance and Explanation of High Recombination Loss”, Mater. Sci. Semicond. Process.16 (2013)441448.Search in Google Scholar

[18] Z. Shen, B. Liu, Y. Xia, J. Liu, S. Zhong and C. Li, “Black Silicon on Emitter Diminishes the Lateral Electric Field and Enhances the Blue Response of A Solar Cell by Optimizing Depletion Region Uniformity”, Scr. Mater. 68 (2013) 199202.Search in Google Scholar

[19] E. Calle, P. Ortega, G. V. Gastrow, I. Martin, H. Savin and R. Alcubilla, “LongTerm Stability of Al2O3 Passivated Black Si”, Ener.Procedia 92 (2016) 341346.Search in Google Scholar

[20] K. Tsujino, M. Matsumura and Y. Nishimoto, “Texturization of Multicrystalline Silicon Wafers For Solar Cells by Chemical Treatment Using Metallic Catalyst”, Sol. Ener. Mater. Sol. Cells 90 (2006) 100110.Search in Google Scholar

[21] F. Cao, K. Chen, J. Zhang, X. Ye, J. Li, S. Zou and X. Su, “NextGeneration MultlCrystalline Silicon Solar Cells: Diamond-Wire Sawing”, NanoTexture and High Efficiency, Sol. Ener. Mater. Sol. Cells 141 (2015) 132138.Search in Google Scholar

[22] E. Vazsonyi, K. D. Clercq, R. Einhaus, E. Said, K. Van-Kerschaver, J. Poortmans, J. Szlufcik and J. Nijs, “Improved Anisotropic Etching Process For industrial Texturing of Silicon Solar Cells”, Sol. Ener. Mater. Sol. Cells 57 (1999) 179188.Search in Google Scholar

[23] I. Zubel, F. Granek, K. Rola and K. Banaszczyk, “Texturization of Si(100) Substrates Using Tensioactive Compounds”, Appl. Surf. Sci. 258 (2012) 90679072.Search in Google Scholar

[24] P. K. Singh, R. Kumar, M. Lal, S. N. Singh and B. K. Das, “?Effectiveness of Anisotropic Etching of Silicon Aqueous Alkaline Solutions”, Sol. Energ. Mat. Sol. Cells 70 (2001) 103113.Search in Google Scholar

[25] G. Kulesza, P. Panek and P. Zieęba, “Time Efficient Texturization of Multicrystalline Silicon the Hf/HnO3 Solutions and Its Effect on Optoelectronic Parameters of Solar Cells”, Arch. Civ. Mech. Eng., 14 (2014) 595601.Search in Google Scholar

[26] U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha and J. Yi, “Comparative Study of Different Approaches of Multicrystalline Silicon Texturing For Solar Cell Fabrication”, Sol. Ener. Mater. Sol. Cells 91 (2007) 285289.Search in Google Scholar

[27] S. Ribl,, O. Breitenstein, “Evaluation of Recombination Velocities of Grain Boundaries Measured by High Resolution Lockin thermography”, Ener. Procedia 38 (2013) 161166.Search in Google Scholar

[28] D. A. G. Bruggeman, “Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen Substanzen. I. Dielektrizittskon-stanten Und Leitfhigkeiten Der Mischkrper Aus Isotropen Substanzen”, Ann. Phys. (Leipzig) 416 (1935) 636664.Search in Google Scholar

[29] Jr, G. E. Jellison and F. A. Modine, “Parameterization of the Optical Functions of Amorphous Materials the interband Region”, Appl. Phys. Lett. 69 (1996) 371373.Search in Google Scholar

[30] A. En Naciri, P. Miska, A. S. Keita, Y. Battie, H. Rinnert and M. Vergnat, “Optical Properties of Uniformly Sized Silicon Nanocrystals within a Single Silicon Oxide Layer”, J. Nanopart. Res. 15 (2013) 153819.Search in Google Scholar

[31] K. Imamura, D. Irishika and H. Kobayashi, “Mechanism of UltraLow Reflectance For Nanocrystalline Si/Crystalline Si Structure Formed by Surface Structure Chemical Transfer Method”, J.Appl.Phys. 121 (2017) 01310715.Search in Google Scholar

[32] E. H. Nicollian and J. R. Brews, , Mos (Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, New York.Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other