Open Access

Effects of HSQ e–beam Resist Processing on the Fabrication of ICP–RIE Etched TiO2 Nanostructures


Cite

[1] PEROTTO, G.—ANTONELLO, A.—FERRARO, D.—MATTEI, G.—MARTUCCI, A. : Patterned TiO2 Nanostructures Fabricated with a Novel Inorganic Resist, Materials Chemistry and Physics 142 (2013), 712–716.10.1016/j.matchemphys.2013.08.029Search in Google Scholar

[2] ZURUZI, A. S.—MacDONALD, N. C. : Facile Fabrication and Integration of Patterned Nanostructured TiO2 for Microsystem Applications, Advanced Functional Materials 15 (2005), 396–402.10.1002/adfm.200400135Search in Google Scholar

[3] KAMAT, P. V. : TiO2 nanostructures: Recent Physical Chemistry Advances, The Journal of Physical Chemistry C 116 (2012), 11849–11851.10.1021/jp305026hSearch in Google Scholar

[4] HUANG, Y.—PANDRAUD, G.—SARRO, P. : The Atomic Layer Deposition Array Defined by Etch-Back Technique: a New Method to Fabricate TiO2 Nanopillars, Nanotubes and Nanochannels Arrays, Nanotechnology 23 (2012), 485–306.Search in Google Scholar

[5] PAULOSE, M.—VARGHESE, O. K.—MOR, G. K.—GRIMES, C. A.—ONG, K. G. : Unprecedented Ultra-High Hydrogen Gas Sensitivity in Undoped Titania Nanotubes, Nanotechnology 17 (2006), 398–402.10.1088/0957-4484/17/2/009Search in Google Scholar

[6] KIM, I.—ROTHSCHILD, A.—LEE, B. H.—KIM, D. Y.—JO, S. M.—TULLER, H. L. : Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers, Nano Letters 6 (2006), 2009-2013.10.1021/nl061197h16968017Search in Google Scholar

[7] DRBOHLAVOVA, J.—VOROZHTSOVA, M.—HRDY, R.—KIZEK, R.—SALYK, O.—HUBALEK, J. : Self-Ordered TiO2 Quantum Dot Array Prepared via Anodic Oxidation, Nanoscale Research Letters 7 (2012), 123.10.1186/1556-276X-7-123330544322333295Search in Google Scholar

[8] LEOPOLD, S.—KRENIN, C.—ULBRICH, A.—KRISCHOCK, S.—HOFFMAN, M. : Formation of Silicon Grass: Nanomasking by Carbon Clusters in Cyclic Deep Reactive Ion Etching, J. Vac. Sci. Technol. B 29 (2011), 011002.10.1116/1.3521490Search in Google Scholar

[9] YUE, W.—WANG, Z.—YANG, Y.—CHEN, L.—SYED, A.—WONG, K.—WANG, X. : Electron-Beam Lithography of Gold Nanostructures for Surface-Enhanced Raman Scattering, J. Micromech. Microeng. 22 (2012), 125007.10.1088/0960-1317/22/12/125007Search in Google Scholar

[10] HENRY, M. D.—WALAVALKAR, S.—HOMYK, A.—SCHERER, A. : Alumina Etch Masks for Fabrication of High-Aspect-Ratio Silicon Micropillars and Nanopolars, Nanotechnology 20 (2009), 255–305.10.1088/0957-4484/20/25/25530519487807Search in Google Scholar

[11] LU, K.—HAMMOND, C.—QIAN, J. : Surface Patterning Nanoparticle-Based Arrays, Mater. Sci. 45 (2010), 582–588.10.1007/s10853-009-3930-9Search in Google Scholar

[12] GUPTA, S. M.—TRIPATHI, M. : A Review of TiO2 Nanoparticles, Chinese Science Bulletin, Physical Chemistry 56 (2011), 1639–1657.Search in Google Scholar

[13] GAO, P.—LI, A.—SUN, D. D.—JERN, NG, W. : Effects of Various TiO2 Nanostructures and Graphene Oxide on Photocatalytic Activity of TiO2, Journal of Hazardous Materials 279 (2014), 96–104.10.1016/j.jhazmat.2014.06.06125038577Search in Google Scholar

[14] NAKATA, K.—FUJISHIMA, A. : TiO2 Photocatalysis: Design and Applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13 (2012), 169–189.10.1016/j.jphotochemrev.2012.06.001Search in Google Scholar

[15] KUPSTA, M. R.—TASCHUK, M.—BRETT, M. J.—SIT, J. C. : Reactive Ion Etching of Columnar Nanostructured TiO2 Thin Films for Modified Relative Humidity Sensor Response Time, IEEE Sensors Journal 9 (2009), 1979–1986.10.1109/JSEN.2009.2032413Search in Google Scholar

[16] YAMAZOE, N.—SHIMANOE, K. : New Perspectives of Gas Sensor Technology, Sensors and Actuators B 138 (2009), 100-107.10.1016/j.snb.2009.01.023Search in Google Scholar

[17] KOSC, I.—HOTOVY, I.—ROCH, T.—PLECENIK, T.—GREGOR, M.—PREDANOCY, M.—CEHLAROVA, M.—KUS, P.—PLECENIK, A. : Double Layer Films based on TiO2 and NiOx for Gas Detection, Applied Surface Science 312 (2014), 120–125.10.1016/j.apsusc.2014.05.193Search in Google Scholar

[18] HOTOVY, I.—KOSTIC, I.—NEMEC, P.—PREDANOCY, M.—REHACEK, V. : Patterning of Titanium Oxide Nanostructures by Electron-Beam Lithography Combined with Plasma Etching, J. Micromech. Microeng. 25 (2015), 074006.10.1088/0960-1317/25/7/074006Search in Google Scholar

[19] HOTOVY, I.—HASCIK, S.—GREGOR, M.—REHACEK, V.—PREDANOCY, M.—PLECENIK, A. : Dry Etching Characteristics of TiO2 Thin Films using Inductively Coupled Plasma for Gas Sensing, Vacuum 107 (2014), 20–22.10.1016/j.vacuum.2014.03.025Search in Google Scholar

[20] HOTOVY, I.—KOSTIC, I.—HASCIK, S.—PREDANOCY, M.—REHACEK, V.—BENCUROVA, A. : Patterning of Titanium Oxide Surfaces using Inductively Coupled Plasma for Gas Sensing, Applied Surface Science 312 (2014), 107–111.10.1016/j.apsusc.2014.03.174Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other