Cite

1. Oddo M, Rossetti AO. Predicting neurological outcome after cardiac arrest. Curr Opin Crit Care. 2011;17:254-259. doi: 10.1097/MCC.0b013e328344f2ae.10.1097/MCC.0b013e328344f2ae21346563Search in Google Scholar

2. Zakkar M, Ascione R, James AF, Angelini GD, Suleiman MS. Inflammation, oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol Ther. 2015;154:13-20. doi: 10.1016/j.pharmthera.2015.06.009.10.1016/j.pharmthera.2015.06.00926116810Search in Google Scholar

3. Doehner W, Haehling S Von, Pschowski R, Storm C, Schroeder T. Influence of core body temperature on Tryptophan metabolism, kynurenines, and estimated IDO activity in critically ill patients receiving target temperature management following cardiac arrest. Resuscitation. 2016;107:107-114. doi: 10.1016/j.resuscitation.2016.07.239.10.1016/j.resuscitation.2016.07.23927565863Search in Google Scholar

4. Yao X, Carlson D, Sun Y, et al. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS One. 2015;10:1-28. doi: 10.1371/journal.pone.0139416.10.1371/journal.pone.0139416459815626448624Search in Google Scholar

5. Tao X, Lu L, Xu Q, Li S, Lin M. Cardioprotective effects of anesthetic preconditioning in rats with ischemia-reperfusion injury: propofol versus isoflurane. J Zhejiang Univ Sci B. 2009;10:740-747. doi: 10.1631/jzus.B0920119.10.1631/jzus.B0920119275988019816998Search in Google Scholar

6. Moore E, Bellomo R, Nichol A. Biomarkers of acute kidney injury in anesthesia, intensive care and major surgery: From the bench to clinical research to clinical practice. Minerva Anestesiol. 2010;76:425-440.Search in Google Scholar

7. Devaux Y, Stammet P, Friberg H, et al. MicroRNAs: new biomarkers and therapeutic targets after cardiac arrest? Crit Care. 2015;19:54. doi: 10.1186/s13054-015-0767-2.10.1186/s13054-015-0767-2432404525886727Search in Google Scholar

8. Bryant RJ, Pawlowski T, Catto JWF, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768-774. doi: 10.1038/bjc.2011.595.10.1038/bjc.2011.595332295222240788Search in Google Scholar

9. Pipan V, Zorc M, Kunej T. MicroRNA polymorphisms in cancer: A literature analysis. Cancers (Basel). 2015;7:1806-1814. doi: 10.3390/cancers7030863.10.3390/cancers7030863458679626371044Search in Google Scholar

10. Stather PW, Sylvius N, Wild JB, Choke E, Sayers RD, Bown MJ. Differential MicroRNA expression profiles in peripheral arterial disease. Circ Cardiovasc Genet. 2013;6:490-497. doi: 10.1161/CIRCGENETICS.111.000053.10.1161/CIRCGENETICS.111.000053Search in Google Scholar

11. Bedreag OH, Papurica M, Rogobete AF, et al. Using Circulating miRNAs as Biomarkers for the Evaluation and Monitoring of the Mitochondrial Damage in the Critically Ill Polytrauma Patients. Clin Lab. 2016;8:1-7. doi: 10.7754/Clin.Lab.2016.160121.10.7754/Clin.Lab.2016.16012128164614Search in Google Scholar

12. Abdelmohsen K, Srikantan S, Kang M-J, Gorospe M. Regulation of senescence by microRNA biogenesis factors. Ageing Res Rev. 2012;11:491-500. doi: 10.1016/j.arr.2012.01.003.10.1016/j.arr.2012.01.003334899522306790Search in Google Scholar

13. Papurica M, Rogobete AF, Sandesc D, et al. The Expression of Nuclear Transcription Factor Kappa B (NF-KB) in the Case of Critically Ill Polytrauma Patients with Sepsis and Its Interactions with microRNAs. Biochem Genet. 2016;54:337–347. doi: 10.1007/s10528-016-9727-z.10.1007/s10528-016-9727-z27003424Search in Google Scholar

14. Bedreag OH, Rogobete AF, Cradigati CA, et al. A novel evaluation of microvascular damage in critically ill polytrauma patients by using circulating microRNAs. Rev Romana Med Lab. 2016;24:21-30. DOI:10.1515/rrlm-2016-001510.1515/rrlm-2016-0015Search in Google Scholar

15. Bedreag OH, Sandesc D, Chiriac SD, et al. The Use of Circulating miRNAs as Biomarkers for Oxidative Stress in Critically Ill Polytrauma Patients. Clin Lab. 2016;62:263-274.10.7754/Clin.Lab.2015.150740Search in Google Scholar

16. Dumache R, Rogobete AF, Bedreag OH, et al. Use of miRNAs as Biomarkers in Sepsis. Anal Cell Pathol (Amst). 2015;2015:186716. doi: 10.1155/2015/186716.10.1155/2015/186716449937526221578Search in Google Scholar

17. Papurica M, Rogobete AF, Sandesc D, et al. Redox Changes Induced by General Anesthesia in Critically Ill Patients with Multiple Traumas. Molecular Biology International. 2015;2015:238586. doi: 10.1155/2015/238586.10.1155/2015/238586467461526693352Search in Google Scholar

18. Papurica M, Sandesc D, Rogobete AF, et al. Cardioprotective Effects Induced by Preconditioning with Halogenated Anesthetics. Journal of Interdisciplinary Medicine. 2016;1:23-31. doi: 10.1515/jim-2016-0006.10.1515/jim-2016-0006Search in Google Scholar

19. Yao L, Lv X, Wang X. MicroRNA 26a inhibits HMGB1 expression and attenuates cardiac ischemia-reperfusion injury. J Pharmacol Sci. 2016;131:6-12. doi: 10.1016/j.jphs.2015.07.023.10.1016/j.jphs.2015.07.02326320674Search in Google Scholar

20. Wu Z, Qi Y, Guo Z, Li P, Zhou D. miR-613 suppresses ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting the programmed cell death 10 gene. Biosci Trends. 2016;10:251-257. doi: 10.5582/bst.2016.01122.10.5582/bst.2016.0112227534371Search in Google Scholar

21. Gidlöf O, Smith JG, Miyazu K, et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord. 2013;13:12. doi: 10.1186/1471-2261-13-12.10.1186/1471-2261-13-12359893023448306Search in Google Scholar

22. D’Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31:2765-2773. doi: 10.1016/j.clinbiochem.2012.04.01310.1016/j.clinbiochem.2012.04.013396535022713968Search in Google Scholar

23. Vegter EL, Schmitter D, Hagemeijer Y, et al. Use of biomarkers to establish potential role and function of circulating microRNAs in acute heart failure. Int J Cardiol. 2016;224:231-239. doi: 10.1016/j.ijcard.2016.09.010.10.1016/j.ijcard.2016.09.01027661412Search in Google Scholar

24. Dong D, Yang B. Role of microRNAs in cardiac hypertrophy, myocardial fibrosis and heart failure. Acta Pharm Sin B. 2011;1:1-7. doi: 10.1002/iub.204.10.1002/iub.20419472179Search in Google Scholar

25. Li HY, Zhao X, Liu YZ, et al. Plasma MicroRNA-126-5p is Associated with the Complexity and Severity of Coronary Artery Disease in Patients with Stable Angina Pectoris. Cell Physiol Biochem. 2016;39:837-846. doi: 10.1159/000447794.10.1159/00044779427497911Search in Google Scholar

26. Liu H, Yang N, Fei Z, et al. Analysis of plasma miR-208a and miR-370 expression levels for early diagnosis of coronary artery disease. Biomed Rep. 2016;5:332-336. doi: 10.3892/br.2016.726.10.3892/br.2016.726499816727602213Search in Google Scholar

27. Mehta R, Otgonsuren M, Younoszai Z, Allawi H, Raybuck B, Younossi Z. Circulating miRNA in patients with non-alcoholic fatty liver disease and coronary artery disease. BMJ Open Gastroenterol. 2016;3:e000096. doi: 10.1136/bmjgast-2016-000096.10.1136/bmjgast-2016-000096496415927493762Search in Google Scholar

28. Sun X, Zhang M, Sanagawa A, et al. Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL cholesterol. Thromb J. 2012;10:16. doi: 10.1186/1477-9560-10-16.10.1186/1477-9560-10-16348959422925274Search in Google Scholar

29. Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677-684. doi: 10.1161/CIRCRESAHA.109.215566.10.1161/CIRCRESAHA.109.21556620595655Search in Google Scholar

30. Wang F, Long G, Zhao C, et al. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J Transl Med. 2013;11:222. doi: 10.1186/1479-5876-11-222.10.1186/1479-5876-11-222384901724053180Search in Google Scholar

31. Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659-666. doi: 10.1093/eurheartj/ehq013.10.1093/eurheartj/ehq01320159880Search in Google Scholar

32. Cheng Y, Tan N, Yang J, et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond). 2010;119:87-95. doi: 10.1042/CS20090645.10.1042/CS20090645359381520218970Search in Google Scholar

33. Meder B, Keller A, Vogel B, et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol. 2011;106:13-23. doi: 10.1007/s00395-010-0123-2.10.1007/s00395-010-0123-220886220Search in Google Scholar

eISSN:
2457-5518
Language:
English