Open Access

Analysis of Circular Development and Investment Possibilities (Transport, Energy and Building) Related to International Sports Event Planning


Cite

[1] parkes o., lettier p., bogle idl. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park. Waste Management, Volume 40 (2015), pp. 157-166.http://dx.doi.org/10.1016/j.wasman.2015.03.01710.1016/j.wasman.2015.03.01725837786Search in Google Scholar

[2] epstein d., jac kson r., braithwait, p.2011. Delivering London 2012: sustainability strategy. Proceedings of the Institution of Civil Engineers - Civil Engineering, Volume 164 (2011), No. 5, pp. 27-33.http://dx.doi.org/10.1680/cien.2011.164.5.2710.1680/cien.2011.164.5.27Search in Google Scholar

[3] song t., wang y. Carbon dioxide fluxes from an urban area in Beijing. Atmospheric Research, Volume 106 (2012), pp. 139-149. http://dx.doi.org/10.1016/j.atmosres.2011.12.00110.1016/j.atmosres.2011.12.001Search in Google Scholar

[4] leopkey b., parent, mm. 2011. Olympic Games legacy: from general benefits to sustainable long-term legacy. The International Journal of the History of Sport. Volume 29 (2011), No. 6, pp. 924-943.http://dx.doi.org/10.1080/09523367.2011.62300610.1080/09523367.2011.623006Search in Google Scholar

[5] samuel s., stubbs w. Green Olympics, green legacies? An exploration of the environmental legacies of the Olympic Games. International Review for the Sociology of Sport, Volume 48 (2012), No. 4, pp. 485-504. http://dx.doi.org/10.1177/101269021244457610.1177/1012690212444576Search in Google Scholar

[6] borocz m, horvath b, herczeg b, kovacs a. Greener cement sector and potential climate strategy development between 2015-2030 (Hungarian case study). APSTRACT - Applied Studies in Agribusiness and Commerce Volume 9 (2015), No. 4, pp. 65-74. http://dx.doi.org/10.19041/APSTRACT/2015/4/910.19041/APSTRACT/2015/4/9Search in Google Scholar

[7] camp rc. Learning from the best leads to superior performance. Journal of Business Strategy, Volume 13 (1992), No. 3, pp. 3-6. http://dx.doi.org/10.1108/eb03948610.1108/eb03948610124954Search in Google Scholar

[8] fogarassy cs., horvath b. Climate policy cost-benefit model application for successful Central European building retrofitting programs - A Hungarian case study. International Journal of Engineering Business Management, Volume 9 (2017), No. (1), pp. 1-8. http://dx.doi.org/10.1177/184797901771757410.1177/1847979017717574Search in Google Scholar

[9] forster d.,okamura s., wilkins g., morris m., scott p., kuikman p., lesschenj.p. gardiner a.,boermans t., grözinger j., eichhammer w., reichardt k. Next phase of the European Climate Change Programme: Analysis of Member States actions to implement the Effort Sharing Decision and options for further community-wide measures. AEA group, Harwell, United Kingdom, 2012.Search in Google Scholar

[10] klinckenberg f., pirie f m., mcandrew l. Renovation Roadmaps for Buildings. Report by The Policy Partners for Eurima, London, England, 2013.Search in Google Scholar

[11] arcipowska a., anagnostopoulos f., mariottini f., kunkel s. Energy Performance Certificates Across The EU - A Mapping of National Approaches. Buildings Performance Institute Europe (BPIE). Brussels, Belgium, 2014Search in Google Scholar

[12] fogarassy cs., horvath b. Low-carbon building innovation trends and policy perspectives in Hungary between 2020 and 2030. YBL Journal of Built Environment, Volume 3 (2015), No. 2, pp. 17-23. http://dx.doi.org/10.1515/jbe-2015-000510.1515/jbe-2015-0005Search in Google Scholar

[13] mavir. A Magyar Villamosenergia-rendszer fogyasztói igényeinek előrejelzése [The forecast of the Hungarian electricity system consumer demands]. MAVIR, Budapest, Hungary, 2015.Search in Google Scholar

[14] nfm. Nemzeti Energiastratégia 2030 [National Energy Strategy 2030]. Ministry of National Development, Budapest, Hungary, 2012.Search in Google Scholar

[15] nfm. Magyarország Megújuló Energia Hasznosítási Cselekvési Terve 2010-2020 [Hungary’s Renewable Energy Action Plan 2010-2020]. Ministry of National Development, Budapest, Hungary, 2011.Search in Google Scholar

[16] fogarassycs., kovac s a. The cost-benefit relations of the future environmental related development strategies in the Hungarian energy sector. YBL Journal of Built Environment, Volume 4 (2016), No. 1, pp. 33-48.http://dx.doi.org/10.1515/jbe-2016-000410.1515/jbe-2016-0004Search in Google Scholar

[17] fogarassy cs., kovacs a., horvath b., borocz m. The development of a Circular Evaluation (CEV) tool - case study for the 2024 Budapest Olympics. Hungarian Agricultural Engineering, Volume 31 (2017), pp. 10-20. http://dx.doi.org/10.17676/ HAE.2017.31.10Search in Google Scholar

[18] ca pros p., de vita a.,tasios n., papad opoulos d., siskos p., apostolaki e., zampara m., paroussos l., fragiada kis k., kouvaritakis n., höglund-isaksson l., winiwarter w., purohit p., böttcher h., frank s., havlík p., gusti m., witzke h. p. EU Energy, Transport and GHG Emissions, Trends to 2050, Reference Scenario 2013. European Commission, Brussels, Belgium, 2013.Search in Google Scholar

[19] fiorello d.,de stasio c., köhler j.,kraft m., newton s., purwanto j., schad e b., schad e w., szimba e. The iTREN-2030 reference scenario until 2030. Deliverable 4 of iTREN-2030 (Integrated transport and energy baseline until 2030). Fraunhofer ISI, Karlsruhe, Germany, 2009.Search in Google Scholar

[20] hill n.,brannigan c., smokers r., schroten a., essen h., skinner i. Developing a better understanding of the secondary impacts and key sensitivities for the decarbonisation of the EU’s transport sector by 2050. Final project report. AEA group, Harwell, United Kingdom, 2012.Search in Google Scholar

[21] international olympic committee. Sustainability through sport - implementing the Olympic movement’s Agenda 21, 2012, pp. 38-48.Search in Google Scholar

eISSN:
2064-2520
Language:
English