Cite

1. Sternlicht M. The cues that regulate ductal branching morphogenesis. Breast Cancer Res. 2006;8(1):201.10.1186/bcr1368141397416524451Search in Google Scholar

2. Sinowatz S, Wrobel K, Etreby MF El, Sinowatz F. On the ultrastructure of the canine mammary gland during pregnancy and lactation. J Anat. 1980;131(2):321-32.Search in Google Scholar

3. Oakes S, Hilton H, Ormandy C. The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res. 2006;8(2):207.10.1186/bcr1411155771216677418Search in Google Scholar

4. Wiseman B, Werb Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296(5570):1046-9.10.1126/science.1067431278898912004111Search in Google Scholar

5. Green K, Lund LR. ECM degrading proteases and tissue remodeling in the mammary gland. BioEssays. 2005;27(9):894-903.10.1002/bies.2028116108064Search in Google Scholar

6. Benaud C, Dickson R, Thompson E. Roles of the matrix metalloproteinases in mammary gland development and cancer. Breast Cancer Res Treat. 1998;50(2):97-116.10.1023/A:1006061115909Search in Google Scholar

7. Fata J, Werb Z, Bissell M. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 2004;6(1):1-11.10.1186/bcr63431444214680479Search in Google Scholar

8. Khokha R, Werb Z. Mammary gland reprogramming: metalloproteinases couple form with function. Cold Spring Harb Perspect Biol. 2011;3(4). pii: a004333. doi: 10.1101/cshperspect.a004333.10.1101/cshperspect.a004333306221721106646Search in Google Scholar

9. Wiseman B, Sternlicht M, Lund L, Alexander C, Mott J, Bissell M, et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol. 2003;162 (6):1123-33.10.1083/jcb.200302090217284812975354Search in Google Scholar

10. Fata J, Leco KJ, Moorehead RA, Martin DC, Khokha R. Timp-1 is important for epithelial proliferation and branching morphogenesis during mouse mammary development. Dev Biol. 1999;211(2):238-54.10.1006/dbio.1999.931310395785Search in Google Scholar

11. Lee PP, Hwang JJ, Murphy G, Ip MM. Functional significance of MMP-9 in tumor necrosis factor-induced proliferation and branching morphogenesis of mammary epithelial cells. Endocrinology. 2000;141(10):3764-73.10.1210/endo.141.10.769711014232Search in Google Scholar

12. Sorrell D, Szymanowska M, Boutinaud M, Robinson C, Clarkson R., Stein T, et al. Regulation of genes encoding proteolytic enzymes during mammary gland development. J Dairy Res. 2005;72(4):433-441.10.1017/S002202990500120216223458Search in Google Scholar

13. Hirayama K, Yokota H, Onai R, Kobayashi T, Kumata T, Kihara K, et al. Detection of matrix metalloproteinases in canine mammary tumors: analysis by immunohistochemistry and zymography. J Comp Path. 2002;127(4):249-56.10.1053/jcpa.2002.059012443732Search in Google Scholar

14. Loukopoulos P, Mungall BA, Straw RC, Thornton JR., Robinson WF. Matrix Metalloproteinase-2 and -9 Involvement in Canine Tumors. Vet Pathol. 2003;40(4):382-94.10.1354/vp.40-4-38212824510Search in Google Scholar

15. Sympson C, Talhouk R, Alexander C, Chin J, Cliff S, Bissell M, et al. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J Cell Biol. 1994;125(3):681-93.10.1083/jcb.125.3.68121199998175886Search in Google Scholar

16. Fata J, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17β-estradiol during the estrous cycle. Biol Reprod. 2001;65(3):680-8.10.1095/biolreprod65.3.68011514328Search in Google Scholar

eISSN:
1313-9053
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Ophthalmology, Public Health, Pharmacy, Clinical Pharmacy