Open Access

Numerical Modelling of Fish Passage with Turning Pools


Cite

Alvarez-Vazquez L. J., Martınez A., Vazquez-Mendez M. E., Vilar M. A. (2008) An optimal shape problem related to the realistic design of river fishways, Ecological Engineering, 32, 293–300.10.1016/j.ecoleng.2007.10.008Search in Google Scholar

Baek K. O., Kim Y. D. (2014) A case study for optimal position of fishway at low-head obstructions in tributaries of Han River in Korea, Ecological Engineering, 64, 222–230.10.1016/j.ecoleng.2013.12.044Search in Google Scholar

Barton A. F., Keller R. J., Katopodis C. (2009) Verification of a numerical model for the prediction of low slope vertical slot fishway hydraulics, Australian Journal of Water Resources, 13, 53–60.10.1080/13241583.2009.11465360Search in Google Scholar

Bombač M., Novak G., Rodič P.,Četina M. (2014) Numerical and physical model study of a vertical slot fishway Journal of Hydrology and Hydromechanics, 62, 150–159.10.2478/johh-2014-0013Search in Google Scholar

Cea L., Pena L., Puertas J., Vazquez-Cendon M., Pena E., (2007) Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways, Journal of Hydraulic Engineering, 133(2), 160–172.10.1061/(ASCE)0733-9429(2007)133:2(160)Search in Google Scholar

Clay C. H. (1995) Design of Fishways and other Fish Facilities, 2nd edition, CRC Press, Inc. Boca Raton, Florida, USA.Search in Google Scholar

Delavan S. K., Sood S., Pérez-Fuentetaja A., Hannes A. R. (2017) Anthropogenic turbulence and velocity barriers for upstream swimming fish: A field study on emerald shiners (Notropis atherinoides) in the Upper Niagara River, Ecological Engineering, 101, 91–106.10.1016/j.ecoleng.2016.12.022Search in Google Scholar

FAO/DVWK (2002), Fish passes – design, dimensions and monitoring, Food and Agriculture Organization of the United Nations, Rome.Search in Google Scholar

Feurich R., Boubée J., Olsen N. R. B. (2012) Improvement of fish passage in culverts using CFD, Ecological Engineering, 47, 1–8.10.1016/j.ecoleng.2012.06.013Search in Google Scholar

Gatski T. B., Hussaini M. Y., Lumley J. L. (1998) Simulation and Modeling of Turbulent Flows, Oxford University Press, Inc. New York, USA.Search in Google Scholar

Goettel M. T., Atkinson J. F., Bennett S. J. (2015) Behavior of western blacknose dace in a turbulence modified flow field, Ecological Engineering, 74, 230–240.10.1016/j.ecoleng.2014.10.012Search in Google Scholar

Guiny E., Ervine D. A., Armstrong J. D. (2005) Hydraulic and Biological Aspects of Fish Passes for Atlantic Salmon, Journal of Hydraulic Engineering, 131, 542–553.10.1061/(ASCE)0733-9429(2005)131:7(542)Search in Google Scholar

Herrera-Granados O. (2018) Turbulence Flow Modeling of One-Sharp-Groyne Field, [in:] Kalinowska M., Mrokowska M., Rowiński P. (eds), Free Surface Flows and Transport Processes, GeoPlanet: Earth and Planetary Sciences. Springer, Cham, 207–218.10.1007/978-3-319-70914-7_12Search in Google Scholar

Khodier M. A., Tullis B. P. (2013) Fish Passage Behavior for Severe Hydraulic Conditions in Baffled Culverts, Journal of Hydraulic Engineering, 140 (3), 322–327.10.1061/(ASCE)HY.1943-7900.0000831Search in Google Scholar

Katopodis C., Williams J. G. (2012) The development of fish passage research in a historical context, Ecological Engineering, 48, 8–18.10.1016/j.ecoleng.2011.07.004Search in Google Scholar

Kirk M. A., Caudill C. C., Tonina D., Symy J. C. (2016) Effects of water velocity, turbulence and obstacle length on the swimming capabilities of adult Pacific lamprey, Fisheries Management and Ecology, 23, 356–366.10.1111/fme.12179Search in Google Scholar

Lee H., Lin C.-L., Weber L. J. (2008) Application of a Nonhydrostatic Model to Flow in a Free Surface Fish Passage Facility, Journal of Hydraulic Engineering, 134, 993–999.10.1061/(ASCE)0733-9429(2008)134:7(993)Search in Google Scholar

Liao J. C. (2007) A review of fish swimming mechanics and behaviour in altered flows, Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1973–1993.10.1098/rstb.2007.2082Search in Google Scholar

Lindberg D. E., Leonardsson K., Andersson A. G., Lundström T. S., Lundqvist H. (2013) Methods for locating the proper position of a planned fishway entrance near a hydropower tailrace, Limnologica, 43, 339–347.10.1016/j.limno.2013.05.007Search in Google Scholar

Lupandin A. I. (2005) Effect of Flow Turbulence on Swimming Speed of Fish, Biology Bulletin, 32, 461–466.10.1007/s10525-005-0125-zSearch in Google Scholar

Mao X., Fu J-J., Tuo Y-C., An R-D., Li J. (2012) Influence of structure on hydraulic characteristics of T shape fishway, Journal of Hydrodynamics, 24, 684–691.10.1016/S1001-6058(11)60292-8Search in Google Scholar

Marriner B. A., Baki A. B. M., Zhu D. Z., Thiem J. D., Cooke S. J., Katopodis C. (2014) Field and numerical assessment of turning pool hydraulics in a vertical slot fishway, Ecological Engineering, 63, 88–101.10.1016/j.ecoleng.2013.12.010Search in Google Scholar

Mortula M. M. (2011) Modeling of a novel fish passage-way using coupled spatially varied flow, Journal of the Franklin Institute, 348, 1627–1637.10.1016/j.jfranklin.2010.03.011Search in Google Scholar

Nikora V. I., Aberle J., Biggs B. J. F., Jowett I. G., Sykes J. R. E. (2003) Effects of fish size, time-to-fatigue and turbulence on swimming performance: a case study of Galaxias maculatus, Journal of Fish Biology, 63, 1365–1382.10.1111/j.1095-8649.2003.00241.xSearch in Google Scholar

Odeh M., Noreika J. F., Haro A., Maynard A., Castro-Santos T., Cada G. F. (2002) Evaluation of the effects of turbulence on the behavior of migratory fish, Final Report 2002. Report to Bonneville Power Administration, Contract No. 00000022, Project No. 200005700.10.2172/961896Search in Google Scholar

Pavlov D. S., Lupandin A. I., Skorobogatov M. A. (2000) The effects of flow turbulence on the behaviour and distribution of fish, Journal of Ichthyology, 40, Suppl. 2, 232–261.Search in Google Scholar

Richmond M. C., Deng Z., Guensch G. R., Tritico H., Pearson W. H. (2007) Mean flow and turbulence characteristics of a full-scale spiral corrugated culvert with implications for fish passage, Ecological Engineering, 30, 333–340.10.1016/j.ecoleng.2007.04.011Search in Google Scholar

Silva A. T., Katopodis C., Santos J. M., Ferreira M. T., Pinheiro A. N. (2012) Cyprinid swimming behaviour in response to turbulent flow, Ecological Engineering, 44, 314–328.10.1016/j.ecoleng.2012.04.015Search in Google Scholar

Tritico H. M., Cotel A. J. (2010) The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus), The Journal of Experimental Biology, 213, 2284–2293.10.1242/jeb.04180620543127Search in Google Scholar

Yasuda Y., Ohtsu I., Takahashi M. (2004) New portable fishway design for existing trapezoidal weirs, Journal of Environmental Engineering and Science, 3, 391–401.10.1139/s03-079Search in Google Scholar

Wyrębek M. (2013) Baffle fishways as an element of restoration of the continuity of the ecological corridor in strongly changed rivers (in Polish), łInfrastruktura i ekologia terenów wiejskich, 3/I, Polska Akademia Nauk o/Kraków, 61–71.Search in Google Scholar

eISSN:
2300-8687
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other