Open Access

Can we distinguish between tree-ring eccentricity developed as a result of landsliding and prevailing winds? consequences for dendrochronological dating


Cite

Bannan MW and Bindra M, 2011. The influence of wind on ring width and cell length in conifer stems. Canadian Journal of Botany 48(2): 255–259, DOI 10.1139/b70-037.BannanMWBindraM2011The influence of wind on ring width and cell length in conifer stemsCanadian Journal of Botany48225525910.1139/b70-037Open DOISearch in Google Scholar

Braam RR, Weiss EEJ and Burrough PA, 1987. Dendrogeomorphological analysis of mass movement a technical note on the research method. Catena Supplement 9: 585–589, DOI 10.1016/0341-8162(87)90008-7.BraamRRWeissEEJBurroughPA1987Dendrogeomorphological analysis of mass movement a technical note on the research methodCatena Supplement958558910.1016/0341-8162(87)90008-7Open DOISearch in Google Scholar

Cockburn JMH, Vetta M and Garver JI, 2016. Tree-ring evidence linking late twentieth century changes in precipitation to slope instability, central New York state, USA. Physical Geography 37(2): 153–168, DOI 10.1080/02723646.2016.1157741.CockburnJMHVettaMGarverJI2016Tree-ring evidence linking late twentieth century changes in precipitation to slope instability, central New York state, USAPhysical Geography37215316810.1080/02723646.2016.1157741Open DOISearch in Google Scholar

Corominas J and Moya J, 2008. A review of assessing landslide frequency for hazard zoning purposes. Engineering Geology 102(3–4): 193–213, DOI 10.1016/j.enggeo.2008.03.018.CorominasJMoyaJ2008A review of assessing landslide frequency for hazard zoning purposesEngineering Geology1023–419321310.1016/j.enggeo.2008.03.018Open DOISearch in Google Scholar

Corominas J and Moya J, 2010. Contribution of dendrochronology to the determination of magnitude–frequency relationships for landslides. Geomorphology 124(3–4): 137–149, DOI 10.1016/j.geomorph.2010.09.001.CorominasJMoyaJ2010Contribution of dendrochronology to the determination of magnitude–frequency relationships for landslidesGeomorphology1243–413714910.1016/j.geomorph.2010.09.001Open DOISearch in Google Scholar

Cropper JP, 1979. Tree-ring skeleton plotting by computer. Tree-Ring Bulletin 39: 47–60.CropperJP1979Tree-ring skeleton plotting by computerTree-Ring Bulletin394760Search in Google Scholar

Duncker P and Spiecker H, 2008. Cross-sectional compression wood distribution and its relation to eccentric radial growth in Picea abies [L.] Karst. Dendrochronologia 26(3): 195–202, DOI 10.1016/j.dendro.2008.06.004.DunckerPSpieckerH2008Cross-sectional compression wood distribution and its relation to eccentric radial growth in Picea abies [L.] KarstDendrochronologia26319520210.1016/j.dendro.2008.06.004Open DOISearch in Google Scholar

Ennos AR, 1997. Wind as an ecological factor. Trends in Ecology & Evolution 12(3): 108–111, DOI 10.1016/S0169-5347(96)10066-5.EnnosAR1997Wind as an ecological factorTrends in Ecology & Evolution12310811110.1016/S0169-5347(96)10066-5Open DOISearch in Google Scholar

Franco-Ramos O , S toffel M and V ázquez-Selem L, 2017. Tree-ring based reconstruction of rockfalls at Cofre de Perote volcano, Mexico. Geomorphology 290: 142–152, DOI 10.1016/j.geomorph.2017.04.003.Franco-RamosOS toffelMV ázquez-SelemL2017Tree-ring based reconstruction of rockfalls at Cofre de Perote volcano, MexicoGeomorphology29014215210.1016/j.geomorph.2017.04.003Open DOISearch in Google Scholar

Fritts HC and Swetman TW, 1986. Dendroecology: A tool for evaluating variations on past and present forest environments. Advances in Ecological Research 19: 111–188, DOI 10.1016/S0065-2504(08)60158-0.FrittsHCSwetmanTW1986Dendroecology: A tool for evaluating variations on past and present forest environmentsAdvances in Ecological Research1911118810.1016/S0065-2504(08)60158-0Open DOISearch in Google Scholar

Gardiner B, Berry P and Moulia B, 2016. Review: Wind impacts on plant growth, mechanics and damage. Plant Science 245: 94–118, DOI 10.1016/j.plantsci.2016.01.006.GardinerBBerryPMouliaB2016Review: Wind impacts on plant growth, mechanics and damagePlant Science2459411810.1016/j.plantsci.2016.01.00626940495Open DOISearch in Google Scholar

Kojs P, Malik I, Wistuba M, Stopka R and Trąbka K, 2012. Mechaniz-my wzrostu ekscentrycznego i formowania się drewna reakcyjnego w kontekście badań dendrogeomorfologicznych - wprowadzenie do nowej hipotezy (Mechanisms of eccentric growth and reaction wood formation in the light of dendrogeomorphological investigations - introduction to the novel hypothesis). Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej w Rogowie 30: 147–156 (in Polish).KojsPMalikIWistubaMStopkaRTrąbkaK2012Mechaniz-my wzrostu ekscentrycznego i formowania się drewna reakcyjnego w kontekście badań dendrogeomorfologicznych - wprowadzenie do nowej hipotezy (Mechanisms of eccentric growth and reaction wood formation in the light of dendrogeomorphological investigations - introduction to the novel hypothesis)Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej w Rogowie30147156(in Polish)Search in Google Scholar

Lang A, Moya J, Corominas J, Schrott L and Dikau R, 1999. Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology 30: 33–52, DOI 10.1016/S0169-555X(99)00043-4.LangAMoyaJCorominasJSchrottLDikauR1999Classic and new dating methods for assessing the temporal occurrence of mass movementsGeomorphology30335210.1016/S0169-555X(99)00043-4Open DOISearch in Google Scholar

Lopez Saez J, Corona C, Stoffel M, Schoeneich P and Berger F, 2012. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology 138(1): 189–202, DOI 10.1016/j.geomorph.2011.08.034.LopezSaez JCoronaCStoffelMSchoeneichPBergerF2012Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French AlpsGeomorphology138118920210.1016/j.geomorph.2011.08.034Open DOISearch in Google Scholar

Łuszczyńska K and Wistuba M, 2015. Czynniki uaktywniające i zróżnicowanie czasowe przemieszczeń koluwiów w różnych częściach stoku osuwiskowego – analiza dendrochronologiczna na przykładzie osuwiska Skalka (Moravskoslezske beskydy) (Triggering factors and temporal variability of colluvia transfer in diverse parts of a landslide slope – Dendrochronological analysis at the example of the Skalka landslide (Moravskoslezske beskydy)). Landform Analysis 28: 103–113 (in Polish), DOI 10.12657/landfana.028.008.ŁuszczyńskaKWistubaM2015Czynniki uaktywniające i zróżnicowanie czasowe przemieszczeń koluwiów w różnych częściach stoku osuwiskowego – analiza dendrochronologiczna na przykładzie osuwiska Skalka(Moravskoslezske beskydy) (Triggering factors and temporal variability of colluvia transfer in diverse parts of a landslide slope – Dendrochronological analysis at the example of the Skalka landslide (Moravskoslezske beskydy))Landform Analysis28103113(in Polish), DOI10.12657/landfana.028.008Open DOISearch in Google Scholar

Łuszczyńska K, Wistuba M and Malik I, 2018. Dendrochronological dating as a basis for a landslide hazard map - an example from the Western Carpathians, Poland. Geochronometria 45: 173–184, DOI 10.1515/geochr-2015-0093.ŁuszczyńskaKWistubaMMalikI2018Dendrochronological dating as a basis for a landslide hazard map - an example from the Western Carpathians, PolandGeochronometria4517318410.1515/geochr-2015-0093Open DOISearch in Google Scholar

Malik I, Danek M, Marchwińska-Wyrwał E, Danek T, Wistuba M and Krąpiec M, 2012. Scots Pine (Pinus sylvestris) growth suppressions and adverse human health effect due to air pollution in Upper Silesian Industrial District (USID), southern Poland. Water Air and Soil Pollution 223(6): 3345–3364, DOI 10.1007/s11270-012-1114-8.MalikIDanekMMarchwińska-WyrwałEDanekTWistubaMKrąpiecM2012Scots Pine (Pinus sylvestris) growth suppressions and adverse human health effect due to air pollution in Upper Silesian Industrial District (USID), southern PolandWater Air and Soil Pollution22363345336410.1007/s11270-012-1114-8336810622707804Open DOISearch in Google Scholar

Malik I and Wistuba M, 2012. Dendrochronological methods for reconstructing mass movements – An example of landslide activity analysis using tree-ring eccentricity. Geochronometria 39(3): 180–196, DOI 10.2478/s13386-012-0005-5.MalikIWistubaM2012Dendrochronological methods for reconstructing mass movements – An example of landslide activity analysis using tree-ring eccentricityGeochronometria39318019610.2478/s13386-012-0005-5Open DOISearch in Google Scholar

Malik I, Wistuba M, Migoń P and Fajer M, 2016. Activity of slow-moving landslides recorded in eccentric tree rings of Norway spruce trees (Picea abies Karst.) – An example from the Kamienne Mts. (Sudetes Mts., Central Europe). Geochronometria 43: 24–37, DOI 10.1515/geochr-2015-0028.MalikIWistubaMMigońPFajerM2016Activity of slow-moving landslides recorded in eccentric tree rings of Norway spruce trees(Picea abies Karst.) – An example from the Kamienne Mts. (Sudetes Mts., Central Europe)Geochronometria43243710.1515/geochr-2015-0028Open DOISearch in Google Scholar

Malik I, Wistuba M, Tie Y, Owczarek P, Woskowicz-Ślęzak B and Łuszczyńska K, 2017. Mass movements of differing magnitude and frequency in a developing high-mountain area of the Moxi basin, Hengduan Mts, China – A hazard assessment. Applied Geography 87: 54–65, DOI 10.1016/j.apgeog.2017.08.003.MalikIWistubaMTieYOwczarekPWoskowicz-ŚlęzakBŁuszczyńskaK2017Mass movements of differing magnitude and frequency in a developing high-mountain area of the Moxi basin, Hengduan Mts, China – A hazard assessmentApplied Geography87546510.1016/j.apgeog.2017.08.003Open DOISearch in Google Scholar

Martin J-P and Germain D, 2015. Can we discriminate snow avalanches from other disturbances using the spatial patterns of tree-ring response? Case studies from the Presidential Range, White Mountains, New Hampshire, United States. Dendrochronologia 37: 17–32, DOI 10.1016/j.dendro.2015.12.004.MartinJ-PGermainD2015Can we discriminate snow avalanches from other disturbances using the spatial patterns of tree-ring response? Case studies from the Presidential Range, White Mountains, New Hampshire, United StatesDendrochronologia37173210.1016/j.dendro.2015.12.004Open DOISearch in Google Scholar

Massey CI, Petley DN and McSaveney MJ, 2013. Patterns of movement in reactivated landslides. Engineering Geology 159: 1–19, DOI 10.1016/j.enggeo.2013.03.011.MasseyCIPetleyDNMcSaveneyMJ2013Patterns of movement in reactivated landslidesEngineering Geology15911910.1016/j.enggeo.2013.03.011Open DOISearch in Google Scholar

Migoń P, Kacprzak A, Malik I, Kasprzak M, Owczarek P, Wistuba M and Pánek T, 2014. Geomorphological, pedological and dendrochronological signatures of a relict landslide terrain, Mt Garbatka (Kamienne Mts), SW Poland. Geomorphology 219: 213–231, DOI 10.1016/j.geomorph.2014.05.005.MigońPKacprzakAMalikIKasprzakMOwczarekPWistubaMPánekT2014Geomorphological, pedological and dendrochronological signatures of a relict landslide terrain, Mt Garbatka (Kamienne Mts), SW PolandGeomorphology21921323110.1016/j.geomorph.2014.05.005Open DOISearch in Google Scholar

Migoń P , P ánek T , M alik I , H rádecký J , O wczarek P and Šilhán K , 2010. Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW Poland. Geomorphology 124(3–4): 200–214, DOI 10.1016/j.geomorph.2010.09.024.MigońPPánek TM alikIH rádeckýJO wczarekPŠilhánK2010Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW PolandGeomorphology1243–420021410.1016/j.geomorph.2010.09.024Open DOISearch in Google Scholar

Noferini L, Pieraccini M, Mecatti D, Macaluso G, Atzeni C, Mantovani M, Marcato G, Pasuto A, Silvano S and Tagliavini F, 2007. Using GB-SAR technique to monitor slow moving landslide. Engineering Geology 95(3–4): 88–98, DOI 10.1016/j.enggeo.2007.09.002.NoferiniLPieracciniMMecattiDMacalusoGAtzeniCMantovaniMMarcatoGPasutoASilvanoSTagliaviniF2007Using GB-SAR technique to monitor slow moving landslideEngineering Geology953–4889810.1016/j.enggeo.2007.09.002Open DOISearch in Google Scholar

Nöjd P, Korpela M, Hari P, Rannik U, Sulkava M, Hollmén J and Mäkinen H, 2017. Effects of precipitation and temperature on the growth variation of Scots pine – A case study at two extreme sites in Finland. Dendrochronologia 46: 35–45, DOI 10.1016/j.dendro.2017.09.003.NöjdPKorpelaMHariPRannikUSulkavaMHollménJMäkinenH2017Effects of precipitation and temperature on the growth variation of Scots pine – A case study at two extreme sites in FinlandDendrochronologia46354510.1016/j.dendro.2017.09.003Open DOISearch in Google Scholar

Paolini L, Villalba R and Grau HR, 2005. Precipitation variability and landslide occurrence in a subtropical mountain ecosystem of NW Argentina. Dendrochronologia 22(3): 175–180, DOI 10.1016/j.dendro.2005.06.001.PaoliniLVillalbaRGrauHR2005Precipitation variability and landslide occurrence in a subtropical mountain ecosystem of NW ArgentinaDendrochronologia22317518010.1016/j.dendro.2005.06.001Open DOISearch in Google Scholar

Papciak T, Malik I, Krzemień K, Wistuba M, Gorczyca E, Wrońska-Wałach D and Sobucki M, 2015. Precipitation as a factor triggering landslide activity in the Kamień massif (Beskid Niski Mts, Western Carpathians). Bulletin of Geography. Physical Geography Series 8: 5–17, DOI 10.2478/7013.PapciakTMalikIKrzemieńKWistubaMGorczycaEWrońska-WałachDSobuckiM2015Precipitation as a factor triggering landslide activity in the Kamień massif(Beskid Niski Mts, Western Carpathians)Bulletin of Geography. Physical Geography Series851710.2478/7013Open DOISearch in Google Scholar

Robertson A, 2011. Centroid of wood density, bole eccentricity, and tree-ring width in relation to vector winds in wave forests. Canadian Journal of Forest Research 21(1): 73–82, DOI 10.1139/x91-011.RobertsonA2011Centroid of wood density, bole eccentricity, and tree-ring width in relation to vector winds in wave forestsCanadian Journal of Forest Research211738210.1139/x91-011Open DOISearch in Google Scholar

Robertson A, 1986. Estimating mean windflow in hilly terrain from tamarack (Larix lancina (Du Roi) K. Koch) deformation. International Journal of Biometeorology 30(4): 333–349, DOI 10.1007/BF02189371.RobertsonA1986Estimating mean windflow in hilly terrain from tamarack (Larix lancina (Du Roi) K. Koch) deformationInternational Journal of Biometeorology30433334910.1007/BF02189371Open DOISearch in Google Scholar

Ruelle J, 2014. Morphology, anatomy and ultrastructure of reaction wood. in: Gardiner B, Barnett J, Saranpää P and Gril J, eds., The biology of reaction wood Springer, Berlin, Heidelberg: 13–35, DOI 10.1007/978-3-642-10814-3.RuelleJ2014Morphology, anatomy and ultrastructure of reaction woodGardinerBBarnettJSaranpääPGrilJThe biology of reaction woodSpringerBerlin, Heidelberg133510.1007/978-3-642-10814-3Open DOISearch in Google Scholar

Schweingruber FH, 1996. Tree rings and environment. Dendroecology Berne, Stuttgart, Vienna, Paul Haupt Publishers: 609 pp.SchweingruberFH1996Tree rings and environment. DendroecologyBerne, Stuttgart, ViennaPaul Haupt Publishers609 ppSearch in Google Scholar

Shroder Jr JF, 1978. Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research 9: 168–185, DOI 10.1016/0033-5894(78)90065-0.ShroderJr JF1978Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, UtahQuaternary Research916818510.1016/0033-5894(78)90065-0Open DOISearch in Google Scholar

Stefanini MC, 2004. Spatio-temporal analysis of a complex landslide in the Northern Apennines (Italy) by means of dendrochronology. Geomorphology 63(3–4): 191–202, DOI 10.1016/j.geomorph.2004.04.003.StefaniniMC2004Spatio-temporal analysis of a complex landslide in the Northern Apennines (Italy) by means of dendrochronologyGeomorphology633–419120210.1016/j.geomorph.2004.04.003Open DOISearch in Google Scholar

Stoffel M, 2010. Magnitude–frequency relationships of debris flows — A case study based on field surveys and tree-ring records. Geomorphology 116(1–2): 67–76, DOI 10.1016/j.geomorph.2009.10.009.StoffelM2010Magnitude–frequency relationships of debris flows — A case study based on field surveys and tree-ring recordsGeomorphology1161–2677610.1016/j.geomorph.2009.10.009Open DOISearch in Google Scholar

Šilhán K, 2017. Dendrogeomorphic chronologies of landslides: Dating of true slide movements? Earth Surface Processes and Landforms 42(13): 2109–2118, DOI 10.1002/esp.4153.ŠilhánK2017Dendrogeomorphic chronologies of landslides: Dating of true slide movements?Earth Surface Processes and Landforms42132109211810.1002/esp.4153Open DOISearch in Google Scholar

Šilhán K, Pánek T and Hradecký J, 2012. Tree-ring analysis in the reconstruction of slope instabilities associated with earthquakes and precipitation (the Crimean Mountains, Ukraine). Geomorphology 173–174: 174–184, DOI 10.1016/j.geomorph.2012.06.010.ŠilhánKPánekTHradeckýJ2012Tree-ring analysis in the reconstruction of slope instabilities associated with earthquakes and precipitation (the Crimean Mountains, Ukraine)Geomorphology173–17417418410.1016/j.geomorph.2012.06.010Open DOISearch in Google Scholar

Šilhán K and Stoffel M, 2015. Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides. Geomorphology 236: 34–43, DOI 10.1016/j.geomorph.2015.02.003.ŠilhánKStoffelM2015Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslidesGeomorphology236344310.1016/j.geomorph.2015.02.003Open DOISearch in Google Scholar

Telewski FW, 2012. Is windswept tree growth negative thigmotropism? Plant Science 184: 20–28, DOI 10.1016/j.plantsci.2011.12.001.TelewskiFW2012Is windswept tree growth negative thigmotropism?Plant Science184202810.1016/j.plantsci.2011.12.00122284706Open DOISearch in Google Scholar

Timell TE, 1986. Compression wood in gymnosperms New York, Springer: 625 pp.TimellTE1986Compression wood in gymnospermsNew YorkSpringer62510.1007/978-3-642-61616-7Search in Google Scholar

Tomczak A, Jelonek T and Pazdrowski W, 2012. Ekscentryczność pni sosny zwyczajnej (Pinus sylvestris L.) z drzewostanów silnie eksponowanych na wiatr (Eccentricity of stems among Scots pine (Pinus sylvestris L.) from tree stands strongly exposed to wind). Prace Komisji Nauk Rolniczych i Komisji Nauk Leśnych 103: 41–46 (in Polish).TomczakAJelonekTPazdrowskiW2012Ekscentryczność pni sosny zwyczajnej (Pinus sylvestris L.) z drzewostanów silnie eksponowanych na wiatr (Eccentricity of stems among Scots pine (Pinus sylvestris L.) from tree stands strongly exposed to wind)Prace Komisji Nauk Rolniczych i Komisji Nauk Leśnych1034146(in Polish)Search in Google Scholar

Tumajer J and Treml V, 2015. Reconstruction ability of dendrochronology in dating avalanche events in the Giant Mountains, Czech Republic. Dendrochronologia 34: 1–9, DOI 10.1016/j.dendro.2015.02.002.TumajerJTremlV2015Reconstruction ability of dendrochronology in dating avalanche events in the Giant Mountains, Czech RepublicDendrochronologia341910.1016/j.dendro.2015.02.002Open DOISearch in Google Scholar

Wang X, Stenström E, Boberg J, Ols C and Drobyshev I, 2017. Outbreaks of Gremmeniella abietina cause considerable decline in stem growth of surviving Scots pine trees. Dendrochronologia 44: 39–47, DOI 10.1016/j.dendro.2017.03.006.WangXStenströmEBobergJOlsCDrobyshevI2017Outbreaks of Gremmeniella abietina cause considerable decline in stem growth of surviving Scots pine treesDendrochronologia44394710.1016/j.dendro.2017.03.006Open DOISearch in Google Scholar

Wiedenhoeft AC, 2013. Structure and function of wood. In: Rowell RM, ed., Handbook of wood chemistry and wood composites CRC Press Taylor and Francis Group, Boca Raton: 9–32.WiedenhoeftAC2013Structure and function of woodRowellRMHandbook of wood chemistry and wood compositesCRC Press Taylor and Francis GroupBoca Raton93210.1201/b12487-4Search in Google Scholar

Wistuba M, 2014. Slope-channel coupling as a factor in the evolution of mountains. The Western Carpathians and Sudetes Cham Heidelberg New York Dordrecht London, Springer: 224 pp, DOI 10.1007/978-3-319-05819-1.WistubaM2014Slope-channel coupling as a factor in the evolution of mountains. The Western Carpathians and SudetesCham Heidelberg New York Dordrecht LondonSpringer22410.1007/978-3-319-05819-1Open DOISearch in Google Scholar

Wistuba M, Malik I, Gärtner H, Kojs P and Owczarek P, 2013. Application of eccentric growth of trees as a tool for landslide analyses: The example of Picea abies Karst. in the Carpathian and Sudeten Mountains (Central Europe). Catena 111 41–55, DOI 10.1016/j.catena.2013.06.027.WistubaMMalikIGärtnerHKojsPOwczarekP2013Application of eccentric growth of trees as a tool for landslide analyses: The example of Picea abies Karstin the Carpathian and Sudeten Mountains (Central Europe)Catena111415510.1016/j.catena.2013.06.027Open DOISearch in Google Scholar

Wistuba M, Malik I, Wójcicki K and Michałowicz P, 2015. Coupling between landslides and eroding stream channels reconstructed from spruce tree rings (examples from the Carpathians and Sudetes – Central Europe). Earth Surface Processes and Landforms 40(3): 293–312, DOI 10.1002/esp.3632.WistubaMMalikIWójcickiKMichałowiczP2015Coupling between landslides and eroding stream channels reconstructed from spruce tree rings(examples from the Carpathians and Sudetes – Central Europe)Earth Surface Processes and Landforms40329331210.1002/esp.3632Open DOISearch in Google Scholar

Zielonka T and Malcher P, 2009. The dynamics of a mountain mixed forest under wind disturbances in the Tatra Mountains, central Europe – a dendroecological reconstruction. Canadian Journal of Forest Research 39(11): 2215–2223, DOI 10.1139/X09-130.ZielonkaTMalcherP2009The dynamics of a mountain mixed forest under wind disturbances in the Tatra Mountains, central Europe – a dendroecological reconstructionCanadian Journal of Forest Research39112215222310.1139/X09-130Open DOISearch in Google Scholar

eISSN:
1897-1695
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, other