Open Access

Identifying the degree of luminescence signal bleaching in fluvial sediments from the Inner Mongolian reaches of the Yellow River


Cite

Fig. 1

A map of the Inner-Mongolian reaches of the upper Yellow River, the locations of drilling cores and modern sample sites. Photographs ot these modern sampling sections are shown above and below the map.
A map of the Inner-Mongolian reaches of the upper Yellow River, the locations of drilling cores and modern sample sites. Photographs ot these modern sampling sections are shown above and below the map.

Fig. 2

The results of preheat plateau tests (a, c) and dose recovery tests (b, d). Samples LFQ-07 and LFQ-04 are of modern fluvial sediments; sample HDZ03-06 is from a drilling core.
The results of preheat plateau tests (a, c) and dose recovery tests (b, d). Samples LFQ-07 and LFQ-04 are of modern fluvial sediments; sample HDZ03-06 is from a drilling core.

Fig. 3

(a) OSL decay cuives for zero (0), natural (N), test (TD, 3.65 Gy), and regeneration doses (R1 and R3, 1 Gy and 5 Gy, respectively) for Sample LFQ-6. (b). The growth curve for each of the modern samples (shown by the black lines); the red line with open circles denotes the average of all the growth curves, which is taken as the standardised growth curve.
(a) OSL decay cuives for zero (0), natural (N), test (TD, 3.65 Gy), and regeneration doses (R1 and R3, 1 Gy and 5 Gy, respectively) for Sample LFQ-6. (b). The growth curve for each of the modern samples (shown by the black lines); the red line with open circles denotes the average of all the growth curves, which is taken as the standardised growth curve.

Fig. 4

De values of different grain sizes for modern samples versus downstream distance
De values of different grain sizes for modern samples versus downstream distance

Fig. 5

Frequency distributions, probability density functions and radial plots of individual De values and errors for different grain sizes of LFQ-6 and LFQ-14
Frequency distributions, probability density functions and radial plots of individual De values and errors for different grain sizes of LFQ-6 and LFQ-14

Fig. 6

Relation between calibrated 14C and OSL ages, and depth.
Relation between calibrated 14C and OSL ages, and depth.

Fig. 7

The correlation between the recalibration 14C (the results were presented on the same time scale as OSL dates) and the OSL ages, and depth, in drilling cores.
The correlation between the recalibration 14C (the results were presented on the same time scale as OSL dates) and the OSL ages, and depth, in drilling cores.

OSL dating results for 14 modern fluvial samples.

Sample IDDepth (m)K (%)Th (ppm)U (ppm)Water content (%)Grain size (μm)Dose rate (Gy/ka)De (Gy)OSL age (a)
LFQ-10.2 ± 0.051.80 ± 0.0611.70 ± 0.332.72 ± 0.1115 ± 538–632.99 ± 0.200.32 ± 0.03110 ± 10
63–902.97 ± 0.200.40± 0.05130 ± 20
LFQ-20.2 ± 0.051.69 ± 0.069.52 ± 0.292.70 ± 0.1115 ± 538–632.77 ± 0.190.49 ± 0.04180 ± 20
63–902.74 ± 0.190.55 ± 0.06200 ± 30
90-1502.71 ± 0.191.18 ± 0.20440 ± 80
LFQ-30.2 ± 0.051.64 ± 0.0510.80 ± 0.302.54 ± 0.1015 ± 538-632.77 ± 0.190.16 ± 0.0160 ± 10
63-1502.72 ± 0.180.35 ± 0.03130 ± 10
LFQ-40.2 ± 0.051.81 ± 0.0611.60 ± 0.323.06 ± 0.1115 ± 538–633.06 ± 0.210.21 ± 0.0270 ± 10
63–903.00 ± 0.200.35 ± 0.03120 ± 10
LFQ-50.2 ± 0.051.87 ± 0.0610.90 ± 0.312.84 ± 0.1115 ± 538–633.03 ± 0.200.74 ± 0.09240 ± 30
63–902.97 ± 0.200.74 ± 0.05250± 20
90-1502.76 ± 0.190.98 ± 0.06330 ± 30
LFQ-60.2 ± 0.051.60 ± 0.0510.9 ± 0.312.70 ± 0.1115 ± 538–632.77 ± 0.190.37 ± 0.05130 ± 20
63–902.75 ± 0.190.57 ± 0.12210 ± 50
90-1502.72 ± 0.191.36 ± 0.14500 ± 60
150–2002.68 ± 0.182.33± 0.31870 ±130
LFQ-70.2 ± 0.051.67 ± 0.0610.30 ± 0.302.80 ± 0.1115 ± 538–632.82 ± 0.190.36 ± 0.03130 ± 10
90±1502.76 ± 0.191.55 ± 0.11560 ± 60
LFQ-80.2 ± 0.051.78 ± 0.0610.1 ± 0.292.43 ± 0.1015 ± 538–632.82 ± 0.190.24 ± 0.0290 ± 10
63–1502.81 ± 0.191.18 ± 0.21430 ± 80
LFQ-90.2 ± 0.051.51 ± 0.0513.5 ± 0.363.38 ± 0.1215 ± 538–632.99 ± 0.200.24 ± 0.0180 ± 10
63–902.97 ± 0.201.17 ± 0.14390 ± 50
90–1502.94 ± 0.192.07 ± 0.19710 ± 80
150–2002.89 ± 0.193.72 ± 0.501290 ±190
LFQ-100.2 ± 0.051.66 ± 0.0512.00 ± 0.343.36 ± 0.1215 ± 538–633.02 ± 0.200.29 ± 0.05100 ± 20
63–903.00 ± 0.200.53 ± 0.05180 ± 20
LFQ-110.2 ± 0.051.65 ± 0.0510.6 ± 0.312.60 ± 0.1015 ± 538–632.78 ± 0.190.43 ± 0.04150 ± 20
63–902.75 ± 0.190.67 ± 0.06240 ± 30
90–1502.72 ± 0.181.62 ± 0.13590 ± 60
LFQ-120.2 ± 0.051.75 ± 0.069.95 ± 0.292.60 ± 0.1015 ± 538–632.82 ± 0.190.44 ± 0.05160 ± 20
63–902.80 ± 0.191.42 ± 0.16510 ± 70
90–1502.77 ± 0.192.35 ± 0.24850 ±100
LFQ-130.2 ± 0.051.76 ± 0.0611.1 ± 0.312.38 ± 0.1015 ± 538–632.85 ± 0.190.33 ± 0.02120 ± 10
63–1502.81 ± 0.190.86 ± 0.08310 ± 40
LFQ-140.2 ± 0.051.63 ± 0.057.90 ± 0.241.89 ± 0.0815 ± 538–632.45 ± 0.171.00 ± 0.09410 ± 40
63–902.43 ± 0.171.11 ± 0.08460 ± 50
90–1502.41 ± 0.171.41 ± 0.13590 ± 70
150–2002.37 ± 0.193.61 ± 0.311520 ±170

OSL dating results for 26 samples from seven fluvial cores.

Sample IDGrain Size (μm)Depth (m)K (%)Th (ppm)U (ppm)Water content (%)Dose rate (Gy/ka)De (Gy)OSL age (ka)
HDZ03-0638–633.91.54 ± 0.069.32 ± 0.292.09 ± 0.1524 ± 52.18 ± 0.162.39 ± 0.121.1 ± 0.1
HDZ03-1438–6314.31.54 ± 0.064.15 ± 0.181.13 ± 0.1420 ± 51.79 ± 0.142.53 ± 0.171.4 ± 0.1
HDZ03-1738–6318.71.65 ± 0.064.95 ± 0.191.03 ± 0.1423 ± 51.66 ± 0.1358.77 ± 1.5135.3 ± 2.9
HDZ08-1138–6311.21.52 ± 0.065.03 ± 0.201.24 ± 0.1321 ± 51.72 ± 0.138.19 ± 0.384.8 ± 0.4
HDZ12-0338–631.51.89 ± 0.0911.35 ± 0.332.45 ± 0.2023 ± 52.81 ± 0.202.31 ± 0.150.8 ± 0.1
HDZ12-0738–637.01.70 ± 0.085.69 ± 0.201.19 ± 0.1321 ± 52.00 ± 0.162.58 ± 0.231.3 ± 0.2
HDZ12-0938–6311.21.62 ± 0.094.96 ± 0.191.06 ± 0.1422 ± 51.81 ± 0.152.45 ± 0.111.4 ± 0.1
DKZ06-0738–635.11.81 ± 0.076.09 ± 0.231.30 ± 0.148 ± 52.59 ± 0.2019.74 ± 0.847.6 ± 0.7
DKZ06-1090–1259.01.59 ± 0.063.33 ± 0.180.92 ± 0.1315 ± 51.75 ± 0.1416.28 ± 1.209.3 ± 1.0
DKZ06-1290–12512.01.58 ± 0.063.65 ± 0.170.79 ± 0.1313 ± 51.75 ± 0.1419.74 ± 1.0511.3 ± 1.1
DKZ06-1538–6315.71.51 ± 0.065.00 ± 0.201.09 ± 0.1319 ± 51.83 ± 0.1441.91 ± 1.3023.0 ± 1.9
DKZ06-1690–12518.01.62 ± 0.063.72 ± 0.190.92 ± 0.1418 ± 51.68 ± 0.1348.71 ± 2.4629.0 ± 2.7
DKZ09-0890–1252.61.65 ± 0.062.59 ± 0.160.68 ± 0.129 ± 51.94 ± 0.1515.52 ± 0.818.0 ± 0.8
DKZ09-1190–1259.01.52 ± 0.062.60 ± 0.150.63 ± 0.1114 ± 51.61 ± 0.1349.61 ± 2.0930.7 ± 2.7
DKZ09-1638–6312.01.36 ± 0.052.95 ± 0.170.63 ± 0.1115 ± 51.53 ± 0.1255.30 ± 1.3636.0 ± 3.1
DKZ09-1890–12517.01.44 ± 0.063.10 ± 0.170.74 ± 0.1118 ± 51.48 ± 0.1277.01 ± 1.9252.2 ± 4.3
DKZ09-2190–12520.01.46 ± 0.062.53 ± 0.140.70 ± 0.1015 ± 51.51 ± 0.1286.44 ± 3.8957.4 ± 5.3
DKZ10-0890–1254.11.71 ± 0.063.29 ± 0.191.06 ± 0.1612 ± 52.00 ± 0.1523.68 ± 1.1811.8 ± 1.1
DKZ10-1690–1259.71.52 ± 0.063.22 ± 0.190.76 ± 0.1216 ± 51.62 ± 0.1325.76 ± 1.0315.9 ± 1.4
DKZ10-2090–12513.21.75 ± 0.064.49 ± 0.211.20 ± 0.1516 ± 51.95 ± 0.15156.25 ± 5.7980.2 ± 6.8
DKZ10-2338–6319.51.76 ± 0.074.58 ± 0.210.97 ± 0.1216 ± 51.93 ± 0.15197.41 ± 8.21102.1 ± 9.0
DKZ13-0638–633.21.77 ± 0.085.64 ± 0.191.27 ± 0.1322 ± 52.02 ± 0.153.10 ± 0.601.5 ± 0.3
DKZ13-0838–635.21.44 ± 0.074.24 ± 0.170.86 ± 0.1220 ± 51.62 ± 0.124.47 ± 0.352.8 ± 0.3
DKZ13-1638–6311.91.76 ± 0.0810.88 ± 0.323.18 ± 0.2217 ± 52.74 ± 0.20276.16 ± 12.15100.8 ± 8.5
DKZ13-1938–6315.11.83 ± 0.087.64 ± 0.242.14 ± 0.1620 ± 52.29 ± 0.17261.27 ± 11.52114.1 ± 9.9

Sample data and 14C age results for 11 samples from seven fluvial cores.

Sample IDLab CodeDepth (m)Materialδ 13C (‰)14C age (BP)Calibrated age 95.4% confidence interval (cal BP)
HDZ03-09LZU14249.1plant residue–36.42375 ± 302340–2650
HDZ08-09Beta-3858056.5clay−23.13260 ± 303400–3570
HDZ08-14Beta-38580617.6clay−25.731400 ± 17034850–35700
HDZ12-09LZU13163.2plant residue−35.62315 ± 252210–2360
DKZ06-02Beta-3857981.5clay−22.52310 ± 402160–2430
DKZ06-08Beta-3857995.8clay−23.311740 ± 5013460–13720
DKZ06-17Beta-38580019.5clay−23.631410 ± 17034860–35710
DKZ09-18LZU142216.7plant residue−33.043680 ± 52045780–48130
DKZ10-20LZU142613plant residue−37.238730 ± 32042230–43140
DKZ13-11Beta-3858028.1clay−23.424770 ± 3028600–28960
DKZ13-12LZU14259.7clay−26.333210 ± 3036910–37900
eISSN:
1897-1695
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, other