Open Access

Tree stems from terrestrial laser scanner measurements


Cite

Aschoff, T., Spiecker, H. 2004. Algorithms for the automatic detection of trees in laser scanner data. – Thies, M., Koch, B., Spiecker, H., Weinacker, H. (eds.). International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8/W2), 1–5. ISPRS.Search in Google Scholar

Burkhart, H.E., Tomé, M. 2012. Modeling forest trees and stands. Dordrecht, Springer. 457 p.10.1007/978-90-481-3170-9Search in Google Scholar

Calders, K., G. Newnham, A. Burt, S. Murphy, P. Raumonen, M. Herold, D. Culvenor, et al. 2015. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. – Methods in Ecology and Evolution, 6, 198–208.Search in Google Scholar

Chang, A., Eo, Y., Kim, Y., Kim, Y. 2013. Identification of individual tree crowns from LiDAR data using a circle fitting algorithm with local maxima and minima filtering. – Remote Sensing Letters, 4(1), 30–38.Search in Google Scholar

Corona, P., Fattorini, L., Franceschi, S., Scrinzi, G., Torresan, C. 2014. Estimation of standing wood volume in forest compartments by exploiting airborne laser scanning information: model-based, design-based, and hybrid perspectives. – Canadian Journal of Forest Research, 44(11), 1303–1311.Search in Google Scholar

de Boor, C. 2001. A practical guide to splines. Heidelberg, Springer.Search in Google Scholar

Garrity, S.R., Meyer, K., Maurer, K.D., Hardiman, B., Bohrer, G. 2012. Estimating plot-level tree structure in a deciduous forest by combining allometric equations, spatial wavelet analysis and airborne LiDAR. – Remote Sensing Letters, 3(5), 443–451.Search in Google Scholar

Hildebrandt, R., Iost, A. 2012. From points to numbers: a database-driven approach to convert terrestrial LiDAR point clouds to tree volumes. – European Journal of Forest Research, 131, 1857–1867.Search in Google Scholar

Kuusk, A., Kuusk, J., Lang, M. 2009. A dataset for the validation of reflectance models. – Remote Sensing of Environment, 113(5), 889–892.Search in Google Scholar

Kuusk, A., Lang, M., Kuusk, J. 2013. Database of optical and structural data for the validation of forest radiative transfer models. – Kokhanovsky, A. (ed.). Light Scattering Reviews, 7, 109–148. Springer.10.1007/978-3-642-21907-8_4Search in Google Scholar

Leica Geosystems AG. 2011. Leica ScanStation C10. The All-in-One Laser Scanner for Any Application. Heerbrugg, Switzerland, Leica Geosystems AG.Search in Google Scholar

Maas, H.G., Bienert, A., Scheller, S., Keane, E. 2008. Automatic forest inventory parameter determination from terrestrial laser scanner data. – International Journal of Remote Sensing, 29(5), 1579–1593.Search in Google Scholar

Magnussen, S., Næsset, E., Gobakken, T., Frazer, G 2012. A fine-scale model for area-based predictions of tree-size-related attributes derived from LiDAR canopy heights. – Scandinavian Journal of Forest Research, 27(3), 312–322.10.1080/02827581.2011.624116Search in Google Scholar

Maltamo, M., Packalen, P., Yu, X., Eerikainen, K., Hyyppa, J., Pitkanen, J. 2005. Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. – Forest Ecology and Management, 216(1–3), 41–50.Search in Google Scholar

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. 1992. Numerical recipes in FORTRAN. The art of scientific computing. Cambridge, Cambridge University Press.Search in Google Scholar

Real, P.L., Moore, J.A., Newberry, J.D. 1989. Principal components analysis of tree stem profiles. – Canadian Journal of Forest Research, 19, 1538–1542.Search in Google Scholar

Schilling, A., Schmidt, A., Maas, H.-G. 2011. Automatic tree detection and diameter estimation in terrestrial laser scanner point clouds. – Wendel, A., Sternig, S., Godec, M. (eds.). 16th Computer Vision Winter Workshop, Mitterberg, Austria, 1–8.Search in Google Scholar

Tansey, K., Selmes, N., Anstee, A., Tate, A., Denniss, A. 2009. Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data. – International Journal of Remote Sensing, 30(19), 5195–5209.Search in Google Scholar

Tappo, E. 1982. Average characteristics of forest stands in Estonia by dominant species, site fertility and age. Tallinn, Eesti NSV Põllumajandusministeeriumi Informatsiooni ja Juurutamise Valitsus. (In Estonian).Search in Google Scholar

eISSN:
1736-8723
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other