Open Access

Towards understanding the role of ectomycorrhizal fungi in forest phosphorus cycling : a modelling approach


Cite

Barber, S. A., 1995: Soil nutrient bioavailability: a mechanistic approach 2nd edition. New York, John Wiley & Sons, 418 p.Search in Google Scholar

Boisvenue, C., Running, S. W., 2006: Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century. Global Change Biology, 12:862–882.10.1111/j.1365-2486.2006.01134.xSearch in Google Scholar

Bontemps, J. D., Hervé, J. C., Leban, J. M., Dhôte, J. F., 2011: Nitrogen footprint in a long-term observation of forest growth over the twentieth century. Trees, 25:237–251.10.1007/s00468-010-0501-2Search in Google Scholar

Brady, N. C., Weil, R. R., 2008: The nature and properties of soils. 14th ed. Upper Saddle River, Pearson Prentice Hall, 975 p.Search in Google Scholar

Braun, S., Thomas, V. F., Quiring, R., Flückiger, W., 2010: Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution, 158:2043–2052.10.1016/j.envpol.2009.11.03020015583Search in Google Scholar

Chapin III, F. S., Schulze, E. D., Mooney, H. A., 1990: The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21:423–447.10.1146/annurev.es.21.110190.002231Search in Google Scholar

Colpaert, J. V., Van Tichelen, K. K., Van Assche, J. A., Van Laere, A., 1999: Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. New Phytologist, 143:589–597.10.1046/j.1469-8137.1999.00471.x33862896Search in Google Scholar

de Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., Van Oijen, M. et al., 2009: The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecology and Management, 258:1814–1823.10.1016/j.foreco.2009.02.034Search in Google Scholar

Deckmyn, G., Verbeeck, H., De Beeck, M. O., Vansteenkiste, D., Steppe, K., Ceulemans, R., 2008: ANAFORE: a stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees. Ecological Modelling, 215:345–368.10.1016/j.ecolmodel.2008.04.007Search in Google Scholar

Deckmyn, G., Mali, B., Kraigher, H., Torelli, N., Ceulemans, R., 2009: Using the process-based stand model ANAFORE including Bayesian optimisation to predict wood quality and quantity and their uncertainty in Slovenian beech. Silva Fennica, 43:523–534.10.14214/sf.204Search in Google Scholar

Deckmyn, G., Campioli, M., Muys, B., Kraigher, H., 2011: Simulating C cycles in forest soils: Including the active role of micro-organisms in the ANAFORE forest model. Ecological Modelling, 222:1972–1985.10.1016/j.ecolmodel.2011.03.011Search in Google Scholar

Deckmyn, G., Meyer, A., Smits, M. M., Ekblad, A., Grebenc, T., Komarov, A. et al., 2014: Simulating ectomycorrhizal fungi and their role in carbon and nitrogen cycling in forest ecosystems. Canadian Journal of Forest Research, 44:535–553.10.1139/cjfr-2013-0496Search in Google Scholar

Dzotsi, K. A., Jones, J. W., Adiku, S. G. K., Naab, J. B., Singh, U., Porter, C. H. et al., 2010: Modeling soil and plant phosphorus within DSSAT. Ecological Modelling, 221:2839–2849.10.1016/j.ecolmodel.2010.08.023Search in Google Scholar

Farquhar, G. V., von Caemmerer, S. V., Berry, J. A., 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149:78–90.10.1007/BF00386231Search in Google Scholar

Fernández-Martínez, M., Vicca, S., Janssens, I. A., Campioli, M., 2014: Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 4:471–476.10.1038/nclimate2177Search in Google Scholar

FFCT, 2013: Minutes of the 13th ICP Forest EP Foliage and Litterfall meeting. International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests of UN/ECE (ICP Forests), Ljubljana, Slovenia.Search in Google Scholar

Franklin, O., Naesholm, Hoegberg, P., Hoegberg, M. N., 2014: Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis. New Phytologist, 203:657–666.10.1111/nph.12840Search in Google Scholar

Gérard, F., Blitz-Frayret, C., Hinsinger, P., Pagès, L. 2017: Modelling the interactions between root system architecture, root functions and reactive transport processes in soil. Plant and Soil, 413:161–180.Search in Google Scholar

Grigal, D. F., 2000: Effects of extensive forest management on soil productivity. Forest Ecology and Management, 138:167–185.10.1016/S0378-1127(00)00395-9Search in Google Scholar

Hinsinger, P., Brauman, A., Devau, N., Gérard, F., Jourdan, C., Laclau, J. P. et al., 2011: Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant and Soil, 348:29–61.10.1007/s11104-011-0903-ySearch in Google Scholar

Horemans, J. A., Bosela, M., Dobor, L., Barna, M., Bahyl, J., Deckmyn, G. et al., 2016: Variance decomposition of stem biomass increment predictions for European beech: contribution of selected sources of uncertainty. Forest Ecology and Management, 361:46–55.10.1016/j.foreco.2015.10.048Search in Google Scholar

Jacobsen, C., Rademacher, P. Meesenburg, H., Meiwes, K. J., 2003: Gehalte chemischer Elemente in den Baumkompartimenten: Literaturstudie und Datensammlung. Göttingen, Selbstverlag des Forschungszentrums Waldökosysteme der Universität Göttingen, 88 p.Search in Google Scholar

Jeppu, G. P., Clement, T. P., 2012: A modified Langmuir- Freundlich isotherm model for simulating pHdependent adsorption effects. Journal of Contaminant Hydrology, 129:46–53.10.1016/j.jconhyd.2011.12.00122261349Search in Google Scholar

Jonard, M., Augusto, L., Hanert, E., Achat, D. L., Bakker, M. R., Morel, C. et al., 2010: Modeling forest floor contribution to phosphorus supply to maritime pine seedlings in two-layered forest soils. Ecological Modelling, 221:927–935.10.1016/j.ecolmodel.2009.12.017Search in Google Scholar

Jonard, M., Legout, A., Nicolas, M., Dambrine, E., Nys, C., Ulrich, E. et al., 2012: Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: a long-term integrated perspective. Global Change Biology, 18:711–725.10.1111/j.1365-2486.2011.02550.xSearch in Google Scholar

Jonard, M., Fürst, A., Verstraeten, A., Thimonier, A., Timmermann, V., Potočić, N. et al., 2015: Tree mineral nutrition is deteriorating in Europe. Global Change Biology, 21:418–430.10.1111/gcb.1265724920268Search in Google Scholar

Jones, C. A., Cole, C. V., Sharpley, A. N., Williams, J. R., 1984: A simplified soil and plant phosphorus model: I. Documentation. Soil Science Society of America Journal, 48:800–805.10.2136/sssaj1984.03615995004800040020xSearch in Google Scholar

Jongbloed, R. H., Clement, J. M. A. M., Borst-Pauwels, G. W. F. H., 1992: Effects of aluminium and pH on growth and potassium uptake by three ectomycorrhizal fungi in liquid culture. Plant and Soil, 140:157–165.10.1007/BF00010593Search in Google Scholar

Landsberg, J. J., Kaufmann, M. R., Binkley, D., Isebrands, J., Jarvis, P. G., 1991: Evaluating progress toward closed forest models based on fluxes of carbon, water and nutrients. Tree Physiology, 9:1–15.10.1093/treephys/9.1-2.114972853Search in Google Scholar

Lindahl, B. D., Tunlid, A., 2014: Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. New Phytologist, 205:1443–1447.10.1111/nph.1320125524234Search in Google Scholar

Marschner, H., Kirkby, E. A., Cakmak, I., 1996: Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimental Botany, 47:1255–1263.10.1093/jxb/47.Special_Issue.125521245257Search in Google Scholar

McKay, M. D., Beckman, R. J., Conover, W. J., 1979: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21:239–245.10.1080/00401706.1979.10489755Search in Google Scholar

McCormack, M. L., Crisfield, E., Raczka, B., Schnekenburger, F., Eissenstat, D. M., Smithwick, E. A., 2015: Sensitivity of four ecological models to adjustments in fine root turnover rate. Ecological modelling, 297: 107–117.10.1016/j.ecolmodel.2014.11.013Search in Google Scholar

Meerts, P., 2002: Mineral nutrient concentrations in sapwood and heartwood: a literature review. Annals of Forest Science, 59:713–722.10.1051/forest:2002059Search in Google Scholar

Meyer, A., Grote, R., Butterbach-Bahl, K., 2012: Integrating mycorrhiza in a complex model system - effects on ecosystem C and N fluxes. European Journal of Forest Research, 131:1809–1831.10.1007/s10342-012-0634-5Search in Google Scholar

Mohren, G. M. J., Van Den Burg, J., Burger, F. W., 1986: Phosphorus deficiency induced by nitrogen input in Douglas fir in the Netherlands. Plant and Soil, 95:191–200.10.1007/BF02375071Search in Google Scholar

Mälkönen, E., 1976: Effect of whole-tree harvesting on soil fertility. Silva Fennica, 3:157–164.10.14214/sf.a14790Search in Google Scholar

Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., McMurtrie, R. E., 2010: CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences, 107:19368–19373.10.1073/pnas.1006463107Search in Google Scholar

Nowak, R. S., Ellsworth, D. S., Smith, S. D., 2004: Functional responses of plants to elevated atmospheric CO2–do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162:253–280.10.1111/j.1469-8137.2004.01033.xSearch in Google Scholar

Orwin, K. H., Kirschbaum, M. U. F., St John, M. G., Dickie, I. A., 2011: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecology Letters, 14:493–502.10.1111/j.1461-0248.2011.01611.xSearch in Google Scholar

Overloop, S., Meiresonne, L., 1999: Basiskarakteristieken van het proefvlak Brasschaat, domeinbos de Inslag. Mededelingen van het Instituut voor Bosbouw en Wildbeheer, 1:11–21.Search in Google Scholar

Parton, W. J., Stewart, J. W., Cole, C. V., 1988: Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry, 5:109–131.10.1007/BF02180320Search in Google Scholar

Peñuelas, J., Sardans, J., Rivas-ubach, A., Janssens, I. A., 2012: The human-induced imbalance between C, N and P in Earth‘s life system. Global Change Biology, 18:3–6.10.1111/j.1365-2486.2011.02568.xSearch in Google Scholar

Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., Van Der Velde, M., Bopp, L. et al., 2013: Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4:2934.10.1038/ncomms3934Search in Google Scholar

Probert, M. E., Keating, B. A., 2000: What soil constraints should be included in crop and forest models? Agriculture, Ecosystems and Environment, 82:273–281.10.1016/S0167-8809(00)00231-0Search in Google Scholar

Rao, I. M., Pessarakli, M., 1996: The role of phosphorus in photosynthesis. In: Pessarakli, M. (ed.): Handbook of Photosynthesis, Marcel Dekker, Inc., New York, p. 173–194.Search in Google Scholar

Read, D., Perez-Moreno, J., 2003: Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytologist, 157:475–492.10.1046/j.1469-8137.2003.00704.x33873410Search in Google Scholar

Read, D. J., Leake, J. R., Perez-Moreno J., 2004: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany, 82:1243–1263.10.1139/b04-123Search in Google Scholar

Reich, P. B., Oleksyn, J., Wright, I. J., 2009: Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 160:207–212.10.1007/s00442-009-1291-319212782Search in Google Scholar

Roskams, P., Neirynck, J., 1999: De voedingstoestand van Grove den (Pinus sylvestris L.) in het level II-proefvlak in Brasschaat. Mededelingen van het Instituut voor Bosbouw en Wildbeheer, 1:23–42.Search in Google Scholar

Runyan, C. W., P. D‘Odorico, 2012: Hydrologic controls on phosphorus dynamics: A modeling framework. Advances in Water Resources 35:94–109.10.1016/j.advwatres.2011.10.004Search in Google Scholar

Schnepf, A., Roose, T., 2006: Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytologist, 171:669–682.10.1111/j.1469-8137.2006.01771.x16866967Search in Google Scholar

Shah, F., Nicolás, C., Bentzer, J., Ellström, M., Smits, M., Rineau, F. et al., 2016: Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytologist, 209:1705–1719.10.1111/nph.13722506109426527297Search in Google Scholar

Toman, M. A., Ashton, P. M. S., 1996: Sustainable forest ecosystems and management: a review article. Forest Science, 42:366–377.Search in Google Scholar

Van Tichelen, K. K., Colpaert, J. V., 2000: Kinetics of phosphate absorption by mycorrhizal and non-mycorrhizal Scots pine seedlings. Physiologia Plantarum, 110:96–103.10.1034/j.1399-3054.2000.110113.xSearch in Google Scholar

Vereecken, H., Schnepf, A., Hopmans, J. W. et al., 2016: Modeling soil processes: review, key challenges and new perspectives. Vadose Zone Journal, 15:1–57.10.2136/vzj2015.09.0131Search in Google Scholar

Vitousek, P. M., Porder, S., Houlton, B. Z., Chadwick, O. A., 2010: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications, 20:5–15.10.1890/08-0127.120349827Search in Google Scholar

Wallander, H., Göransson, H., Rosengren, U., 2004: Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia, 139:89–97.10.1007/s00442-003-1477-z14727173Search in Google Scholar

Yanai, R. D., 1992: Phosphorus budget of a 70-yearold northern hardwood forest. Biogeochemistry, 17:1–22.10.1007/BF00002757Search in Google Scholar

Zhenh, W., Morris, E. K., Rillig, M. C., 2014: Ectomycorrhizal fungi in association with Pinus sylvestris seedlings promote soil aggregation and soil water repellency. Soil Biology en Biochemistry, 78:326–331.10.1016/j.soilbio.2014.07.015Search in Google Scholar

Zinke, P. J., 1962: The pattern of influence of individual forest trees on soil properties. Ecology, 43:130–133.10.2307/1932049Search in Google Scholar

eISSN:
0323-1046
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other