Open Access

Dehydrogenase activity in topsoil at windthrow plots in Tatra National Park


Cite

Adamczyk, B., Adamczyk, S., Kukkola, M., Tamminen, P., Smolander, A., 2015: Logging residue harvest may decrease enzymatic activity of boreal forest soils. Soil Biology and Biochemistry, 82:74-80.10.1016/j.soilbio.2014.12.017Search in Google Scholar

Adamczyk, B., Ahvenainen, A., Sietiö, O. M., Kanerva, S., Kieloaho, A. J., Smolander, A. et al., 2016: The contribution of ericoid plants to soil nitrogen chemistry and organic matter decomposition in boreal forest soil. Soil Biology and Biochemistry, 103:394-404.10.1016/j.soilbio.2016.09.016Search in Google Scholar

Achat, D. L., Deleuze, C., Landmann, G., Pousse, N., Ranger, J., Augusto, L., 2015: Quantifying consequences of removing harvesting residues on forest soils and tree growth - A meta-analysis. Forest Ecology and Management, 348:124-141.10.1016/j.foreco.2015.03.042Search in Google Scholar

Bardgett, R., 2005: The Biology of Soil. Oxford University Press, 255 p.10.1093/acprof:oso/9780198525035.001.0001Search in Google Scholar

Benefield, C. B., Howard, P. J., Howard, D. M., 1977: The estimation of dehydrogenase activity in soil. Soil Biology and Biochemistry, 6:67-70.10.1016/0038-0717(77)90063-3Search in Google Scholar

Blońska, E., 2010: Enzyme activity in forest peat soils. Folia Forestalia Polonica, Series A, 52:20-25.Search in Google Scholar

Das, S. K., Varma, A., 2011: Role of Enzymes in Maintaining Soil Health. In: Shukla, G., Varma, A. (eds.): Soil Enzymology, p. 25-42.10.1007/978-3-642-14225-3_2Search in Google Scholar

Dilly, O., 2010: Microbial Energetics in Soils. In: Buscot, F., Varma, A. (eds.): Microorganisms in Soils: Roles in Genesis and Functions, Berlin/Heidelberg, Springer- Verlag, p. 123-138.10.1007/3-540-26609-7_6Search in Google Scholar

Fernández-Calviño, D., Soler-Rovira, P., Polo, A., Díaz-Raviña, M., Arias-Estévez, M., Plaza, C., 2010: Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Biology and Biochemistry, 42:2119-2127.10.1016/j.soilbio.2010.08.007Search in Google Scholar

Fontaine, S., Mariotti, A., Abbadie, L., 2003: The priming effect of organic matter: A question of microbial competition? Soil Biology and Biochemistry, 35:837-843.10.1016/S0038-0717(03)00123-8Search in Google Scholar

Geng, Y., Dighton, J., Gray, D., 2012: The effects of thinning and soil disturbance on enzyme activities under pitch pine soil in New Jersey Pinelands. Applied Soil Ecology, 62:1-7.10.1016/j.apsoil.2012.07.001Search in Google Scholar

Hanajík, P., 2015: Microbial PLFA , Organic Carbon Fractions and Microbial Biomass in Soils under Different Windthrow Management in Biospheric Reservation of the Tatras. ATINER’s Conference Paper Series No: ERT2015-1722, p. 1-12, Athens, Athens Institute for Education and Research ATINER.Search in Google Scholar

Hanajík, P., Fritze, H., 2009: Effects of forest management on soil properties at windthrow area in Tatra National Park (TANAP). Acta Environmentalica Universitatis Comenianae (Bratislava), 17:36-46.Search in Google Scholar

Hanajík, P., Šimonovičová, A., Vykouková, I., 2016: Vybrané pôdno-ekologické charakteristiky na kalamitnom území v TANAP-e (2005-2016). Ostrava, Vysoká škola báňská - Technická univerzita Ostrava, 99 p.Search in Google Scholar

Hazlett, P. W., Gordon, A. M., Voroney, R. P., Sibley, P. K., 2007: Impact of harvesting and logging slash on nitrogen and carbon dynamics in soils from upland spruce forests in northeastern Ontario. Soil Biology and Biochemistry, 39:43-57.10.1016/j.soilbio.2006.06.008Search in Google Scholar

Chen, Z. J., Tian, Y. H., Zhang, Y., Song, B. R., Li, H. C., Chen, Z. H., 2016: Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands. Ecological Engineering, 92:243-250.10.1016/j.ecoleng.2016.04.001Search in Google Scholar

Januszek, K., Długa, J., Socha, J., 2015: Dehydrogenase activity of forest soils depends on the assay used. International Agrophysics, 29:47-59.10.1515/intag-2015-0009Search in Google Scholar

Koreň, M., 2005: Vetrová kalamita 19. novembra 2004 - Nové pohľady a konsekvencie. Výskumná stanica a Múzeum TANAP-u, ŠL TANAP-u.Search in Google Scholar

Von Mersi, W., Schinner, F., 1991: An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils, 11:216-220.10.1007/BF00335770Search in Google Scholar

Özkan, U., Gökbulak, F., 2017: Effect of vegetation change from forest to herbaceous vegetation cover on soil moisture and temperature regimes and soil water chemistry. CATENA, 149:158-166.10.1016/j.catena.2016.09.017Search in Google Scholar

Paul, E. A., 2007: Soil Microbiology, Ecology, and Biochemistry in Perspective. Soil Microbiology, Ecology and Biochemistry. Elsevier Inc. USA, 2004:3-24.10.1016/B978-0-08-047514-1.50005-6Search in Google Scholar

Pett-Ridge, J., Firestone, M. K., 2005: Redox Fluctuation Structures Microbial Communities in a Wet Tropical Soil. Applied and Environmental Microbiology, 71:6998-7007.10.1128/AEM.71.11.6998-7007.2005128774116269735Search in Google Scholar

Quilchano, C., Marañón, T., 2002: Dehydrogenase activity in Mediterranean forest soils. Biology and Fertility of Soils, 35:102-107.10.1007/s00374-002-0446-8Search in Google Scholar

Salazar, S., Sánchez, L. E., Alvarez, J., Valverde, A., Galindo, P., Igual, J. M. et al., 2011: Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37:1123-1131.10.1016/j.ecoleng.2011.02.007Search in Google Scholar

Shaw, L. J., Burns, R. G., 2006: Enzyme Activity Profiles and Soil Quality. In: Bloem, J. et al. (ed.): Microbiological methods for assessing soil quality, p. 158-183.10.1079/9780851990989.0158Search in Google Scholar

Song, Y., Deng, S. P., Acosta-Martínez, V., Katsalirou, E., 2008: Characterization of redox-related soil microbial communities along a river floodplain continuum by fatty acid methyl ester (FAME) and 16S rRNA genes. Applied Soil Ecology, 40:499-509.10.1016/j.apsoil.2008.07.005Search in Google Scholar

Trevors, J. T., 1984a: Effect of substrate concentration, inorganic nitrogen, O2 concentration, temperature and pH on dehydrogenase activity in soil. Plant and Soil, 77:285-293.10.1007/BF02182931Search in Google Scholar

Trevors, J. T., 1984b: Dehydrogenase activity in soil: a comparison between the INT and TTC assay. Soil Biology and Biochemistry, 16:673-674.10.1016/0038-0717(84)90090-7Search in Google Scholar

Vance, E. D., Brookes, P. C., Jenkinson, D. S., 1987: An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19:703-707.10.1016/0038-0717(87)90052-6Search in Google Scholar

VonMersi, W., Schinner, F., 1991: An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils, 11:216-220.10.1007/BF00335770Search in Google Scholar

Waldron, K., Ruel, J. C., Gauthier, S., 2013: Forest structural attributes after windthrow and consequences of salvage logging. Forest Ecology and Management, 289: 28-37.10.1016/j.foreco.2012.10.006Search in Google Scholar

Wolinska, A., Stepniewska, Z., 2012: Dehydrogenase Activity in the Soil Environment. In: Canuto, R. A. (ed.): Dehydrogenases, p. 183-210.10.5772/48294Search in Google Scholar

Xu, J., Xue, L., Su, Z., 2016: Impacts of Forest Gaps on Soil Properties After a Severe Ice Storm in a Cunninghamia lanceolata Stand. Pedosphere, 26:408-416.10.1016/S1002-0160(15)60053-4Search in Google Scholar

Yang, Y., Geng, Y., Zhou, H., Zhao, G., Wang, L., 2017: Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest. Pedobiologia, 61:51-60.10.1016/j.pedobi.2017.03.001Search in Google Scholar

eISSN:
2454-0358
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other