Open Access

A Model for Fatigue Crack Growth in the Paris Regime under the Variability of Cyclic Hardening and Elastic Properties


Cite

[1] N. Vikram and R. Kumar, “Review on fatigue-crack growth and finite element method,” Int. J. Sci. Eng. Res., vol. 4, no. 4, pp. 833–843, 2013.Search in Google Scholar

[2] F. Bergner, G. Zouhar, and G. Tempus, “The material-dependent variability of fatigue crack growth rates of aluminium alloys in the Paris regime,” Int. J. Fatigue, vol. 23, pp. 383–394, 2001.10.1016/S0142-1123(01)00006-8Search in Google Scholar

[3] J. H. Melson, “Fatigue crack growth analysis with finite element methods and a monte carlo simulation,” Thesis Master, Faculty of the Virginia Polytechnic Institute, 2014.Search in Google Scholar

[4] T. Mann, “The influence of mean stress on fatigue crack propagation in aluminium alloys,” Int. J. Fatigue, vol. 29, no. 8, pp. 1393–1401, 2007.Search in Google Scholar

[5] A. E. M. Alaoui, “Influence du chargement sur la propagation en fatigue de fissures courtes dans un acier de construction navale,” Thesis Doctor, University of Metz, 2005.Search in Google Scholar

[6] K. Alrubaie, E. Barroso, and L. Godefroid, “Fatigue crack growth analysis of pre-strained 7475–T7351 aluminum alloy,” Int. J. Fatigue, vol. 28, no. 8, pp. 934–942, Aug. 2006.10.1016/j.ijfatigue.2005.09.008Search in Google Scholar

[7] J.-K. Kim and D.-S. Shim, “The variation in fatigue crack growth due to the thickness effect,” Int. J. Fatigue, vol. 22, pp. 611–618, 2000.10.1016/S0142-1123(00)00032-3Search in Google Scholar

[8] J. R. Mohanty, B. B. Verma, and P. K. Ray, “Prediction of fatigue crack growth and residual life using an exponential model: Part I (constant amplitude loading),” Int. J. Fatigue, vol. 31, pp. 418–424, 2009.10.1016/j.ijfatigue.2008.07.015Search in Google Scholar

[9] J. C. Newman, “The merging of fatigue and fracture mechanics concepts: a historical perspective,” Prog. Aerosp. Sci., vol. 34, no. 5–6, pp. 347–390, 1998.10.1016/S0376-0421(98)00006-2Search in Google Scholar

[10] M. Vormwald, “Fatigue crack propagation under large cyclic plastic strain conditions,” Procedia Mater. Sci., vol. 3, pp. 301–306, 2014.10.1016/j.mspro.2014.06.052Search in Google Scholar

[11] P. Johansingh, C. Mukhopadhyay, T. Jayakumar, S. Mannan, and B. Raj, “Understanding fatigue crack propagation in AISI 316 (N) weld using Elber’s crack closure concept: Experimental results from GCMOD and acoustic emission techniques,” Int. J. Fatigue, vol. 29, no. 12, pp. 2170–2179, Dec. 2007.Search in Google Scholar

[12] M. Vormwald, “Effect of cyclic plastic strain on fatigue crack growth,” Int. J. Fatigue, pp. 1–9, 2015.Search in Google Scholar

[13] K. Prasad, V. Kumar, K. Bhanu Sankara Rao, and M. Sundararaman, “Effects of crack closure and cyclic deformation on thermomechanical fatigue crack growth of a Near α Titanium Alloy,” Metall. Mater. Trans. A, vol. 47A, no. 7, pp. 3713–3730, Jul. 2016.Search in Google Scholar

[14] H. L. Ewalds, “The effect of environment on fatigue crack closure in Aluminium alloys,” Eng. Fract. Mechamics, vol. 13, pp. 1001–1006, 1980.Search in Google Scholar

[15] J. R. Lloyd, “The effect of residual stress and crack closure on fatigue crack growth,” University of Wollongong Thesis Collection, 1999.Search in Google Scholar

[16] L. Lawson, E. Y. Chen, and M. Meshii, “Near-threshold fatigue: a review,” Int. J. Fatigue, vol. 21, pp. 15–34, 1999.10.1016/S0142-1123(99)00053-5Search in Google Scholar

[17] P. Pao, H. Jones, S. Cheng, and C. Feng, “Fatigue crack propagation in ultrafine grained Al–Mg alloy,” Int. J. Fatigue, vol. 27, no. 10–12, pp. 1164–1169, Oct. 2005.Search in Google Scholar

[18] T. Hanlon, E. D. Tabachnikova, and S. Suresh, “Fatigue behavior of nanocrystalline metals and alloys,” Int. J. Fatigue, vol. 27, no. 10–12, pp. 1147–1158, 2005.Search in Google Scholar

[19] K. Pandey and S. Chand, “An energy based fatigue crack growth model,” Int. J. Fatigue, vol. 25, no. 8, pp. 771–778, Aug. 2003.10.1016/S0142-1123(03)00049-5Search in Google Scholar

[20] P. J. Huffman, “A strain energy based damage model for fatigue crack initiation and growth,” Int. J. Fatigue, vol. 88, pp. 197–204, 2016.10.1016/j.ijfatigue.2016.03.032Search in Google Scholar

[21] N. W. Klingbeil, “A total dissipated energy theory of fatigue crack growth in ductile solids,” Int. J. Fatigue, vol. 25, pp. 117–128, 2003.10.1016/S0142-1123(02)00073-7Search in Google Scholar

[22] S. C. Wu, Z. W. Xu, C. Yu, O. L. Kafka, and W. K. Liu, “A physically short fatigue crack growth approach based on low cycle fatigue properties,” Int. J. Fatigue, vol. 103, pp. 185–195, Oct. 2017.10.1016/j.ijfatigue.2017.05.006Search in Google Scholar

[23] A. Noroozi, G. Glinka, and S. Lambert, “A two parameter driving force for fatigue crack growth analysis,” Int. J. Fatigue, vol. 27, no. 10–12, pp. 1277–1296, Oct. 2005.Search in Google Scholar

[24] A. Noroozi, G. Glinka, and S. Lambert, “A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force,” Int. J. Fatigue, vol. 29, no. 9–11, pp. 1616–1633, 2007.Search in Google Scholar

[25] R. C. Dimitriu and H. K. D. H. Bhadeshia, “Fatigue crack growth rate model for metallic alloys,” Mater. Des., vol. 31, pp. 2134–2139, 2010.Search in Google Scholar

[26] J. C. Radon, “A model for fatigue crack growth in a threshold region,” Int. J. Fatigue, vol. 4, no. 3, pp. 161–166, 1982.10.1016/0142-1123(82)90044-5Search in Google Scholar

[27] K. M. Lal and S. B. L. Garg, “A fatigue crack propagation model for strain hardening materials,” Eng. Fract. Mechamics, vol. 9, pp. 939–949, 1977.10.1016/0013-7944(77)90014-5Search in Google Scholar

[28] B. Tomkins, “Fatigue crack propagation – an analysis,” Phil Mag, vol. 18, no. 155, pp. 1041–1066, 1968.Search in Google Scholar

[29] N. A. Fleck, K. J. Kang, and M. F. Ashby, “The cyclic properties of engineering materials,” Acta Metall. Materalia, vol. 42, pp. 365–381, 1994.10.1016/0956-7151(94)90493-6Search in Google Scholar

[30] K. K. Shi, L. X. Cai, S. Qi, and C. Bao, “Prediction of fatigue crack growth based on low cycle fatigue properties,” Eng. Fract. Mech., pp. 1–18, 2013.Search in Google Scholar

[31] K. K. Shi, L. X. Cai, L. Chen, S. C. Wu, and C. Bao, “A prediction model for fatigue crack growth using effective cyclic plastic zone and low cycle fatigue properties,” Int. J. Fatigue, vol. 158, pp. 209–219, Apr. 2016.10.1016/j.engfracmech.2016.02.046Search in Google Scholar

[32] A. Tzamtzis and A. T. Kermanidis, “Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties,” Frat. ed Integrità Strutt., vol. 35, pp. 396–404, 2016.10.3221/IGF-ESIS.35.45Search in Google Scholar

[33] S. K. Paul and S. Tarafder, “Cyclic plastic deformation response at fatigue crack tips,” Int. J. Press. Vessel. Pip., vol. 101, pp. 81–90, 2013.10.1016/j.ijpvp.2012.10.007Search in Google Scholar

[34] F. V. Antunes, R. Branco, P. A. Prates, and L. Borrego, “Fatigue crack growth modelling based on CTOD for the 7050-T6 alloy,” Fatigue Fract. Eng. Mater. Struct., vol. 40, no. 8, pp. 1309–1320, Aug. 2017.Search in Google Scholar

[35] B. Ould Chikh, A. Imad, and M. Benguediab, “Influence of the cyclic plastic zone size on the propagation of the fatigue crack in case of 12NC6 steel,” Comput. Mater. Sci., vol. 43, pp. 1010–1017, 2008.Search in Google Scholar

[36] S. C. Forth, C. W. Wright, and W. M. Johnston, “7075-T6 and 2024-T351 aluminum alloy fatigue crack growth rate data,” NASA Cent. Aerosp. Inf., no. 213907, pp. 1–19, 2005.Search in Google Scholar

[37] A. Tzamtzis and A. T. Kermanidis, “Improvement of fatigue crack growth resistance by controlled overaging in 2024-T3 aluminium alloy,” Fatigue Fract. Eng. Mater. Struct., vol. 0, pp. 1–13, 2014.10.1111/ffe.12163Search in Google Scholar

[38] A. Fatemi, A. Plaseied, A. K. Khosrovaneh, and D. Tanner, “Application of bi-linear log-log S-N model to strain-controlled fatigue data of aluminum alloys and its effect on life predictions,” Int. J. Fatigue, vol. 27, pp. 1040–1050, 2005.Search in Google Scholar

[39] S. Mikheevskiy, “Elastic-plastic fatigue crack growth analysis under variable amplitude loading spectra,” Thesis Doctor, University of Waterloo of Canada, 2009.10.1016/j.ijfatigue.2009.02.035Search in Google Scholar

[40] J. T. P. Castro, Fatigue - Volume II - Propagation of cracks, thermal and stochastic effects. 2009.Search in Google Scholar

[41] J. Colin, “Deformation history and load sequence effects on cumulative fatigue damage and life predictions,” Thesis Doctor, University of Toledo Digital Repository, 2010.Search in Google Scholar

[42] A. Saoudi, “Prédiction de la rupture par fatigue dans les pièces automobiles en alliages aluminium,” Thesis Doctor, University of Quebec of Chicoutimi, 2008.10.1522/030032462Search in Google Scholar

[43] A. H. Noroozi, G. Glinka, and S. Lambert, “Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains,” Eng. Fract. Mech., vol. 75, no. 2, pp. 188–206, 2008.10.1016/j.engfracmech.2007.03.024Search in Google Scholar

[44] ASTM E 647-00, “Standard test method for measurement of fatigue crack growth rates,” ASTM Int., vol. 3, pp. 1–43, 2001.Search in Google Scholar

[45] C. Jingjie, H. Yi, D. Leilei, and L. Yugang, “A new method for cyclic crack-tip plastic zone size determination under cyclic tensile load,” Eng. Fract. Mech., vol. 126, pp. 141–154, 2014.10.1016/j.engfracmech.2014.05.001Search in Google Scholar

[46] D. Chen, K. Shirato, M. W. Barsoum, T. El-Raghy, and R. O. Ritchie, “Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures,” J. Am. Ceram. Soc., vol. 84, pp. 2914–2920, 2001.Search in Google Scholar

[47] F. Khelil, B. Aour, M. Belhouari, and N. Benseddiq, “Modeling of fatigue crack propagation in aluminum alloys using an energy based approach,” Eng. Technol. Appl. Sci. Res., vol. 3, pp. 488–496, 2013.10.48084/etasr.329Search in Google Scholar

[48] S. Ray and J. M. C. Kishen, “Energy based fatigue crack propagation model for plain concrete,” Fract. Mech. Concr. Concr. Struct., vol. 8, pp. 978–989, 2010.Search in Google Scholar

[49] S. B. Chakrabortty, “A model relating low cycle fatigue properties and microstructure to fatigue crack propagation rates,” Fatigue Eng. Mater. Struct., vol. 2, pp. 331–344, 1979.10.1111/j.1460-2695.1979.tb01091.xSearch in Google Scholar

[50] J. Wasé and E. Heier, “Fatigue crack growth thresholds—the influence of Young’s modulus and fracture surface roughness,” Int. J. Fatigue, vol. 20, no. 10, pp. 737–742, 1998.10.1016/S0142-1123(98)00034-6Search in Google Scholar

[51] S. Groh, S. Olarnrithinun, W. A. Curtin, A. Needleman, V. S. Deshpande, and E. Van der Giessen, “Fatigue crack growth from a cracked elastic particle into a ductile matrix,” Philos. Mag., vol. 88, no. 30–32, pp. 3565–3583, Oct. 2008.Search in Google Scholar

[52] Y. Xiang, Z. Lu, and Y. Liu, “Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: Uniaxial loading,” Int. J. Fatigue, vol. 32, no. 2, pp. 341–349, 2010.10.1016/j.ijfatigue.2009.07.011Search in Google Scholar

[53] M. Ndiaye, S. Gaye, Z. Azari, and G. Pluvinage, “Propagation de fissures en fatigue par chocs,” J. des Sci., vol. 6, no. 1, pp. 22–29, 2006.Search in Google Scholar

[54] B. Ould Chikh, J. M. N. A. Imad, and M. Benguediab, “Influence de la variabilité des paramètres de la relation de Paris sur la prédiction de la durée de vie en fatigue,” vol. 4, pp. 27–31, 2007.Search in Google Scholar

[55] Z. Gao, W. Sun, Y. Wang, and F. Zhang, “Fatigue crack growth properties of typical pressure vessel steels at high temperature,” in 18th International Conference on Structural Mechanics in Reactor Technology, 2005, pp. 1754–1761.Search in Google Scholar

eISSN:
2300-7591
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other